Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/svd_fit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/svd_fit.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,138 @@ +% SVD_FIT estimates parameters for a linear model using SVD +% +% DESCRIPTION: SVD_FIT estimates parameters for a linear model using SVD +% +% CALL: X = svd_fit([C1 C2 ... CN], Y, pl) +% X = svd_fit(C1,C2,C3,...,CN, Y, pl) +% +% INPUTS: C1...CN - AOs defing the models to fit the measurement set to. +% Y - AO which represents the measurement set +% +% Note: the length of the vectors in Ci and Y must be the same. +% Note: the last input AO is taken as Y. +% +% pl - parameter list (see below) +% +% OUTPUTs: X - An AO with N elements with the fitting coefficients to y_i +% OR +% - a vector of N AOs each with one fitting coefficient to y_i +% +% The procinfo field of the output AOs is filled with the following key/value +% pairs: +% +% 'STDX' - standard deviations of the parameters +% 'MSE' - the mean-squared errors +% 'COV' - the covariance matrix +% +% +% PARAMETERS: +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'svd_fit')">Parameters Description</a> +% +% VERSION: $Id: svd_fit.m,v 1.6 2011/04/08 08:56:12 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +function varargout = svd_fit(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [A, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + if nargout == 0 + error('### svd_fit can not be used as a modifier method. Please give one output'); + end + + % combine plists + pl = parse(pl, getDefaultPlist()); + + % Build matrices for fit + + C = A(1:end-1); + Y = A(end); + H = C.y; + y = Y.y; + [u,s,v] = svd(H,0); + P = v/s*u'*y; + f = zeros(length(H),1); %y = zeros(length(d),1); + for kk = 1:length(P) + f = f + P(kk).*H(:,kk); + end + MSE = sum(abs(y-f).^2)./length(y); + a = H'*H; + S = inv(a)*MSE; + STDX = sqrt(diag(S)); + + % Build X + if find(pl,'vector_out') + for jj = 1:length(P) + X(jj) = ao(P(jj)); + X(jj).data.setYunits(Y.yunits/C(jj).yunits); + X(jj).data.setDy(STDX(jj)); + X(jj).name = sprintf('svd_fit(%s)', Y.name); + X(jj).addHistory(getInfo('None'), pl, ao_invars, [A(:).hist]); + % Set proc info + X(jj).procinfo = plist('STDX', STDX(jj), 'MSE', MSE, 'COV', S); + end + else + X = ao(P); + X.data.setYunits(Y.yunits/C(1).yunits); + X.data.setDy(STDX); + X.name = sprintf('svd_fit(%s)', Y.name); + X.addHistory(getInfo('None'), pl, ao_invars, [A(:).hist]); + % Set proc info + X.procinfo = plist('STDX', STDX, 'MSE', MSE, 'COV', S); + end + + % Set outputs + varargout{1} = X; + +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.op, '$Id: svd_fit.m,v 1.6 2011/04/08 08:56:12 hewitson Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + + % Vector out + p = param({'vector_out','The estimated coefficients are output as a vector of AOs.'}, paramValue.TRUE_FALSE); + pl.append(p); + +end +% END