diff m-toolbox/classes/@ao/welch.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/classes/@ao/welch.m	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,301 @@
+% WELCH Welch spectral estimation method.
+%
+% [pxx, f, info] = welch(x,type,pl)
+% [pxx, f, info] = welch(x,y,type,pl)
+%
+% INPUTS:      x    - input analysis objects
+%              y    - input analysis objects
+%              type - type of spectrum:
+%                       'psd'      - compute Power Spectral Denstiy (PSD)
+%                       'ms'       - compute Mean-square (Power) Spectrum (MS)
+%                       'cpsd'     - compute cross-spectral density
+%                       'tfe'      - estimate transfer function between inputs
+%                       'mscohere' - estimate magnitude-squared cross-coherence
+%                       'cohere'   - estimate complex cross-coherence
+%              pl   - input parameter list
+%
+% PARAMETERS: 'Win'   - a specwin window object [default: Kaiser -200dB psll]
+%             'Olap' - segment percent overlap [default: taken from window function]
+%             'Nfft'  - number of samples in each fft [default: length of input data]
+%             'Scale' - one of
+%                                'ASD' - amplitude spectral density
+%                                'PSD' - power spectral density [default]
+%                                'AS'  - amplitude spectrum
+%                                'PS'  - power spectrum
+%                       * applies only to spectrum 'Type' 'psd'
+%             'Order' - order of segment detrending
+%                        -1 - no detrending
+%                         0 - subtract mean [default]
+%                         1 - subtract linear fit
+%                         N - subtract fit of polynomial, order N
+%
+% Copied directly from MATLAB and extended to do segment-wise detrending,
+% compute transfer function variance and to take a plist input
+%
+% M Hewitson 08-05-08
+%
+% $Id: welch.m,v 1.34 2011/03/14 16:06:05 mauro Exp $
+%
+
+%   Author(s): P. Pacheco
+%   Copyright 1988-2006 The MathWorks, Inc.
+%   $Revision: 1.34 $  $Date: 2011/03/14 16:06:05 $
+
+%   References:
+%     [1] Petre Stoica and Randolph Moses, Introduction To Spectral
+%         Analysis, Prentice-Hall, 1997, pg. 15
+%     [2] Monson Hayes, Statistical Digital Signal Processing and
+%         Modeling, John Wiley & Sons, 1996.
+%     [3] JS Bendat and AG Piersol, Engineering applications of correlation
+%         and spectral analysis, John Wiley & Sons, 1993.
+
+
+% Compute the periodogram power spectrum of each segment and average always
+% compute the whole power spectrum, we force Fs = 1 to get a PS not a PSD.
+
+function varargout = welch(varargin)
+  
+  if nargin == 3
+    a  = varargin{1};
+    esttype = varargin{2};
+    pl = varargin{3};
+    x  = a.data.y;
+    inunits = a.data.yunits;
+  else
+    a  = varargin{1};
+    b  = varargin{2};
+    esttype = varargin{3};
+    pl = varargin{4};
+    if a.data.fs ~= b.data.fs
+      error('### Two time-series have different sample rates.');
+    end
+    inunits = b.data.yunits / a.data.yunits;
+    x  = {a.data.y, b.data.y};
+  end
+  
+  % Parse inputs
+  win     = find(pl, 'Win');
+  nfft    = find(pl, 'Nfft');
+  olap    = find(pl, 'Olap')/100;
+  scale   = find(pl, 'scale');
+  Xolap   = round(olap*nfft);
+  fs      = a.data.fs;
+  order   = find(pl, 'order');
+  
+  [x,M,isreal_x,y,Ly,win,winName,winParam,noverlap,k,L,options] = ...
+    ao.welchparse(x,esttype,win.win, Xolap, nfft, fs);
+  
+  % Initialize
+  Sxx = zeros(options.nfft,1);
+  
+  % Frequency vector was specified, return and plot two-sided PSD
+  freqVectorSpecified = false; nrow = 1;
+  if length(options.nfft) > 1,
+    freqVectorSpecified = true;
+    [ncol,nrow] = size(options.nfft);
+  end
+  
+  % Compute the periodogram power spectrum of each segment and average always
+  % compute the whole power spectrum, we force Fs = 1 to get a PS not a PSD.
+  
+  % Initialize
+  Mnxx = 0; Mn2xx = 0;
+  if freqVectorSpecified,
+    Sxx = zeros(length(options.nfft),1);
+  else
+    Sxx = zeros(options.nfft,1);
+  end
+  range = options.range;
+  
+  LminusOverlap = L-noverlap;
+  xStart = 1:LminusOverlap:k*LminusOverlap;
+  xEnd   = xStart+L-1;
+  switch lower(esttype)
+    case {'ms','psd'}
+      for ii = 1:k,
+        if order < 0
+          seg = x(xStart(ii):xEnd(ii));
+        else
+          [seg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order);
+        end
+        [Sxxk,w] = ao.computeperiodogram(seg,win,...
+          options.nfft,esttype,options.Fs);
+        % Welford's algorithm for updating mean and variance
+        if ii == 1
+          Mnxx = Sxxk;
+        else
+          Qxx = Sxxk - Mnxx;
+          Mnxx = Mnxx + Qxx/ii;
+          Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx);
+        end
+      end
+      Sxx = Mnxx;
+      if k == 1
+        Svxx = [];
+      else
+        Svxx = Mn2xx/(k-1)/k;
+      end
+    case 'cpsd'
+      for ii = 1:k,
+        if order < 0
+          xseg = x(xStart(ii):xEnd(ii));
+        else
+          [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order);
+        end
+        if order < 0
+          yseg = y(xStart(ii):xEnd(ii));
+        else
+          [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order);
+        end
+        [Sxxk,w] =  ao.computeperiodogram({xseg,...
+          yseg},win,options.nfft,esttype,options.Fs);
+        % Welford's algorithm to update mean and variance
+        Qxx = Sxxk - Mnxx;
+        Mnxx = Mnxx +Qxx/ii;
+        Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx));
+      end
+      Sxx = Mnxx;
+      if k ==1
+        Svxx = [];
+      else
+        Svxx = Mn2xx/(k-1)/k;
+      end
+    case 'tfe'
+      % compute transfer function
+      Sxy = zeros(options.nfft,1); % Initialize
+      Syy = zeros(options.nfft,1); % Initialize
+      for ii = 1:k,
+        if order < 0
+          xseg = x(xStart(ii):xEnd(ii));
+        else
+          [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order);
+        end
+        if order < 0
+          yseg = y(xStart(ii):xEnd(ii));
+        else
+          [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order);
+        end
+        [Sxxk,w] = ao.computeperiodogram(xseg,...
+          win,options.nfft,esttype,options.Fs);
+        [Sxyk,w] = ao.computeperiodogram({yseg,...
+          xseg},win,options.nfft,esttype,options.Fs);
+        [Syyk,w] =  ao.computeperiodogram(yseg,...
+          win,options.nfft,esttype,options.Fs);
+        Sxx = Sxx + Sxxk;
+        Sxy = Sxy + Sxyk;
+        Syy = Syy + Syyk;
+        % don't need to be divided by k because only rations are used here
+      end
+    case {'mscohere','cohere'}
+      % Note: (Sxy1+Sxy2)/(Sxx1+Sxx2) ~= (Sxy1/Sxy2) + (Sxx1/Sxx2)
+      % ie, we can't push the computation of Cxy into computeperiodogram.
+      Sxy = zeros(options.nfft,1); % Initialize
+      Syy = zeros(options.nfft,1); % Initialize
+      for ii = 1:k,
+        if order < 0
+          xseg = x(xStart(ii):xEnd(ii));
+        else
+          [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order);
+        end
+        if order < 0
+          yseg = y(xStart(ii):xEnd(ii));
+        else
+          [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order);
+        end
+        [Sxxk,w] = ao.computeperiodogram(xseg,...
+          win,options.nfft,esttype,options.Fs);
+        [Syyk,w] =  ao.computeperiodogram(yseg,...
+          win,options.nfft,esttype,options.Fs);
+        [Sxyk,w] = ao.computeperiodogram({xseg,...
+          yseg},win,options.nfft,esttype,options.Fs);
+        Sxx = Sxx + Sxxk;
+        Sxy = Sxy + Sxyk;
+        Syy = Syy + Syyk;
+        % don't need to be divided by k because only rations are used here
+      end
+  end
+  % Generate the freq vector directly in Hz to avoid roundoff errors due to
+  % conversions later.
+  if ~freqVectorSpecified,
+    w = psdfreqvec('npts',options.nfft, 'Fs',options.Fs);
+  else
+    if strcmpi(options.range,'onesided')
+      warning(generatemsgid('InconsistentRangeOption'),...
+        'Ignoring ''onesided'' option. When a frequency vector is specified, a ''twosided'' PSD is computed');
+    end
+    options.range = 'twosided';
+  end
+  
+  switch lower(esttype)
+    case {'psd','cpsd'}
+      % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power].
+      % Also, corresponding freq vector and freq units.
+      % Here we use our own 'computepsd' to scale correctly the variance
+      if k == 1
+        [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype);
+        P = Pxx;
+        dP = [];
+      else
+        [Pxx,Pvxx,w,units] = utils.math.computepsd(Sxx,Svxx,w,options.range,options.nfft,options.Fs,esttype);
+        P = Pxx;
+        % the 1/k factor should come after welchscale if we don't want to apply sqrt() to it.
+        % we correct for that here. It is only needed for 'asd','as' in
+        % psd/cpsd, the other cases go always through 'PSD'.
+        if (strcmpi(scale,'PSD') || strcmpi(scale,'PS'))
+          dP = Pvxx;
+        elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS'))
+          dP = Pvxx/k;
+        else
+          error('### Unknown scale')
+        end
+      end
+    case 'tfe'
+      % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power].
+      % Also, corresponding freq vector and freq units.
+      % In the Cross PSD, the frequency vector and xunits are not used.
+      [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype);
+      [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype);
+      [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype);
+      % mean and std
+      P = Pxy ./ Pxx; % Txy
+      if k == 1
+        dP =[];
+      else
+        dP = (k/(k-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy));
+      end
+    case 'mscohere'
+      % Magnitude Square Coherence estimate.
+      % Auto PSD for 2nd input vector. The freq vector & xunits are not
+      % used.
+      [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype);
+      [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype);
+      [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype);
+      % mean and std
+      P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence
+      dP = (2*P/k).*(1-P).^2;
+    case 'cohere'
+      % Complex Coherence estimate.
+      % Auto PSD for 2nd input vector. The freq vector & xunits are not
+      % used.
+      [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype);
+      [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype);
+      [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype);
+      P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence
+      dP = (2*abs(P)/k).*(1-abs(P)).^2;
+  end
+  %   end
+  
+  % Scale to required units
+  [P, dP, info] = ao.welchscale(P, dP, win, fs, scale, inunits);
+  info.navs = k;
+  
+  if k ==1
+    dev = [];
+  else
+    dev = sqrt(dP);
+  end
+  
+  varargout = {P, w, info, dev};
+  
+end
+