Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/welch.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/welch.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,301 @@ +% WELCH Welch spectral estimation method. +% +% [pxx, f, info] = welch(x,type,pl) +% [pxx, f, info] = welch(x,y,type,pl) +% +% INPUTS: x - input analysis objects +% y - input analysis objects +% type - type of spectrum: +% 'psd' - compute Power Spectral Denstiy (PSD) +% 'ms' - compute Mean-square (Power) Spectrum (MS) +% 'cpsd' - compute cross-spectral density +% 'tfe' - estimate transfer function between inputs +% 'mscohere' - estimate magnitude-squared cross-coherence +% 'cohere' - estimate complex cross-coherence +% pl - input parameter list +% +% PARAMETERS: 'Win' - a specwin window object [default: Kaiser -200dB psll] +% 'Olap' - segment percent overlap [default: taken from window function] +% 'Nfft' - number of samples in each fft [default: length of input data] +% 'Scale' - one of +% 'ASD' - amplitude spectral density +% 'PSD' - power spectral density [default] +% 'AS' - amplitude spectrum +% 'PS' - power spectrum +% * applies only to spectrum 'Type' 'psd' +% 'Order' - order of segment detrending +% -1 - no detrending +% 0 - subtract mean [default] +% 1 - subtract linear fit +% N - subtract fit of polynomial, order N +% +% Copied directly from MATLAB and extended to do segment-wise detrending, +% compute transfer function variance and to take a plist input +% +% M Hewitson 08-05-08 +% +% $Id: welch.m,v 1.34 2011/03/14 16:06:05 mauro Exp $ +% + +% Author(s): P. Pacheco +% Copyright 1988-2006 The MathWorks, Inc. +% $Revision: 1.34 $ $Date: 2011/03/14 16:06:05 $ + +% References: +% [1] Petre Stoica and Randolph Moses, Introduction To Spectral +% Analysis, Prentice-Hall, 1997, pg. 15 +% [2] Monson Hayes, Statistical Digital Signal Processing and +% Modeling, John Wiley & Sons, 1996. +% [3] JS Bendat and AG Piersol, Engineering applications of correlation +% and spectral analysis, John Wiley & Sons, 1993. + + +% Compute the periodogram power spectrum of each segment and average always +% compute the whole power spectrum, we force Fs = 1 to get a PS not a PSD. + +function varargout = welch(varargin) + + if nargin == 3 + a = varargin{1}; + esttype = varargin{2}; + pl = varargin{3}; + x = a.data.y; + inunits = a.data.yunits; + else + a = varargin{1}; + b = varargin{2}; + esttype = varargin{3}; + pl = varargin{4}; + if a.data.fs ~= b.data.fs + error('### Two time-series have different sample rates.'); + end + inunits = b.data.yunits / a.data.yunits; + x = {a.data.y, b.data.y}; + end + + % Parse inputs + win = find(pl, 'Win'); + nfft = find(pl, 'Nfft'); + olap = find(pl, 'Olap')/100; + scale = find(pl, 'scale'); + Xolap = round(olap*nfft); + fs = a.data.fs; + order = find(pl, 'order'); + + [x,M,isreal_x,y,Ly,win,winName,winParam,noverlap,k,L,options] = ... + ao.welchparse(x,esttype,win.win, Xolap, nfft, fs); + + % Initialize + Sxx = zeros(options.nfft,1); + + % Frequency vector was specified, return and plot two-sided PSD + freqVectorSpecified = false; nrow = 1; + if length(options.nfft) > 1, + freqVectorSpecified = true; + [ncol,nrow] = size(options.nfft); + end + + % Compute the periodogram power spectrum of each segment and average always + % compute the whole power spectrum, we force Fs = 1 to get a PS not a PSD. + + % Initialize + Mnxx = 0; Mn2xx = 0; + if freqVectorSpecified, + Sxx = zeros(length(options.nfft),1); + else + Sxx = zeros(options.nfft,1); + end + range = options.range; + + LminusOverlap = L-noverlap; + xStart = 1:LminusOverlap:k*LminusOverlap; + xEnd = xStart+L-1; + switch lower(esttype) + case {'ms','psd'} + for ii = 1:k, + if order < 0 + seg = x(xStart(ii):xEnd(ii)); + else + [seg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); + end + [Sxxk,w] = ao.computeperiodogram(seg,win,... + options.nfft,esttype,options.Fs); + % Welford's algorithm for updating mean and variance + if ii == 1 + Mnxx = Sxxk; + else + Qxx = Sxxk - Mnxx; + Mnxx = Mnxx + Qxx/ii; + Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx); + end + end + Sxx = Mnxx; + if k == 1 + Svxx = []; + else + Svxx = Mn2xx/(k-1)/k; + end + case 'cpsd' + for ii = 1:k, + if order < 0 + xseg = x(xStart(ii):xEnd(ii)); + else + [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); + end + if order < 0 + yseg = y(xStart(ii):xEnd(ii)); + else + [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order); + end + [Sxxk,w] = ao.computeperiodogram({xseg,... + yseg},win,options.nfft,esttype,options.Fs); + % Welford's algorithm to update mean and variance + Qxx = Sxxk - Mnxx; + Mnxx = Mnxx +Qxx/ii; + Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx)); + end + Sxx = Mnxx; + if k ==1 + Svxx = []; + else + Svxx = Mn2xx/(k-1)/k; + end + case 'tfe' + % compute transfer function + Sxy = zeros(options.nfft,1); % Initialize + Syy = zeros(options.nfft,1); % Initialize + for ii = 1:k, + if order < 0 + xseg = x(xStart(ii):xEnd(ii)); + else + [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); + end + if order < 0 + yseg = y(xStart(ii):xEnd(ii)); + else + [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order); + end + [Sxxk,w] = ao.computeperiodogram(xseg,... + win,options.nfft,esttype,options.Fs); + [Sxyk,w] = ao.computeperiodogram({yseg,... + xseg},win,options.nfft,esttype,options.Fs); + [Syyk,w] = ao.computeperiodogram(yseg,... + win,options.nfft,esttype,options.Fs); + Sxx = Sxx + Sxxk; + Sxy = Sxy + Sxyk; + Syy = Syy + Syyk; + % don't need to be divided by k because only rations are used here + end + case {'mscohere','cohere'} + % Note: (Sxy1+Sxy2)/(Sxx1+Sxx2) ~= (Sxy1/Sxy2) + (Sxx1/Sxx2) + % ie, we can't push the computation of Cxy into computeperiodogram. + Sxy = zeros(options.nfft,1); % Initialize + Syy = zeros(options.nfft,1); % Initialize + for ii = 1:k, + if order < 0 + xseg = x(xStart(ii):xEnd(ii)); + else + [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); + end + if order < 0 + yseg = y(xStart(ii):xEnd(ii)); + else + [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order); + end + [Sxxk,w] = ao.computeperiodogram(xseg,... + win,options.nfft,esttype,options.Fs); + [Syyk,w] = ao.computeperiodogram(yseg,... + win,options.nfft,esttype,options.Fs); + [Sxyk,w] = ao.computeperiodogram({xseg,... + yseg},win,options.nfft,esttype,options.Fs); + Sxx = Sxx + Sxxk; + Sxy = Sxy + Sxyk; + Syy = Syy + Syyk; + % don't need to be divided by k because only rations are used here + end + end + % Generate the freq vector directly in Hz to avoid roundoff errors due to + % conversions later. + if ~freqVectorSpecified, + w = psdfreqvec('npts',options.nfft, 'Fs',options.Fs); + else + if strcmpi(options.range,'onesided') + warning(generatemsgid('InconsistentRangeOption'),... + 'Ignoring ''onesided'' option. When a frequency vector is specified, a ''twosided'' PSD is computed'); + end + options.range = 'twosided'; + end + + switch lower(esttype) + case {'psd','cpsd'} + % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. + % Also, corresponding freq vector and freq units. + % Here we use our own 'computepsd' to scale correctly the variance + if k == 1 + [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); + P = Pxx; + dP = []; + else + [Pxx,Pvxx,w,units] = utils.math.computepsd(Sxx,Svxx,w,options.range,options.nfft,options.Fs,esttype); + P = Pxx; + % the 1/k factor should come after welchscale if we don't want to apply sqrt() to it. + % we correct for that here. It is only needed for 'asd','as' in + % psd/cpsd, the other cases go always through 'PSD'. + if (strcmpi(scale,'PSD') || strcmpi(scale,'PS')) + dP = Pvxx; + elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS')) + dP = Pvxx/k; + else + error('### Unknown scale') + end + end + case 'tfe' + % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. + % Also, corresponding freq vector and freq units. + % In the Cross PSD, the frequency vector and xunits are not used. + [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); + [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype); + [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype); + % mean and std + P = Pxy ./ Pxx; % Txy + if k == 1 + dP =[]; + else + dP = (k/(k-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy)); + end + case 'mscohere' + % Magnitude Square Coherence estimate. + % Auto PSD for 2nd input vector. The freq vector & xunits are not + % used. + [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); + [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype); + [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype); + % mean and std + P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence + dP = (2*P/k).*(1-P).^2; + case 'cohere' + % Complex Coherence estimate. + % Auto PSD for 2nd input vector. The freq vector & xunits are not + % used. + [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); + [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype); + [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype); + P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence + dP = (2*abs(P)/k).*(1-abs(P)).^2; + end + % end + + % Scale to required units + [P, dP, info] = ao.welchscale(P, dP, win, fs, scale, inunits); + info.navs = k; + + if k ==1 + dev = []; + else + dev = sqrt(dP); + end + + varargout = {P, w, info, dev}; + +end +