Mercurial > hg > ltpda
diff m-toolbox/classes/@ssm/cpsdForCorrelatedInputs.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ssm/cpsdForCorrelatedInputs.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,283 @@ +% cpsdForCorrelatedInputs computes the output theoretical CPSD shape with given inputs. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: cpsdForCorrelatedInputs computes the output theoretical CPSD +% or PSD shape with given inputs. +% It returns summed and contributions only and takes +% input arrays of objects (instead of vectors) +% +% CALL: [mat_out] = CPSD(sys, pl) +% +% INPUTS: +% - sys, (array of) ssm object +% +% OUTPUTS: +% _ mat_out contains specified returned aos +% +% <a href="matlab:utils.helper.displayMethodInfo('ssm', 'cpsdForCorrelatedInputs')">Parameters Description</a> +% +% VERSION: $Id: cpsdForCorrelatedInputs.m,v 1.2 2011/05/23 14:18:20 adrien Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = cpsdForCorrelatedInputs(varargin) + + %% starting initial checks + + % use the caller is method flag + callerIsMethod = utils.helper.callerIsMethod; + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all SSMs and plists + [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); + [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); + if ~isempty(rest) + pl = combine(pl, plist(rest{:})); + end + pl = combine(pl, getDefaultPlist()); + + %%% Internal call: Only one object + don't look for a plist + internal = strcmp(varargin{end}, 'internal'); + + %% begin function body + + %% retrieve system infos + + if numel(sys)~=1 + error('noisespectrum needs exactly one ssm as an input') + end + if ~sys.isnumerical + error(['error because system ',sys.name,' is not numerical']); + end + if ~sys.isStable + error('input ssm is not stable!') + end + if sys.timestep==0 + timestep = 1; + else + timestep = sys.timestep; + end + if ~internal + inhist = sys.hist; + end + + %% modifying system's ordering + if find(pl, 'reorganize') + sys = reorganize(sys, pl, 'set', 'for cpsdForCorrelatedInputs', 'internal', 'internal'); + end + + %% collecting functions i/o data + aos_in = find(pl, 'aos'); + PZ_in = find(pl, 'PZmodels'); + cov_in = find(pl, 'covariance'); + cpsd_in = find(pl, 'CPSD'); + noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); + powWhiteNoise = noise_in; + [U1,S1,V1] = svd(noise_in.'); % testing hermitian symmetry and definite positiveness + if (sum(S1<0)>0) + error('covariance/cpsd matrix is not positive') + elseif norm(U1-V1')>1e-15*sqrt(numel(U1)) + error('covariance/cpsd matrix is not hermitian symmetric') + end + + %% getting system's i/o sizes + inputSizes = sys.inputsizes; + outputSizes = sys.outputsizes; %#ok<NASGU> + + Naos_in = inputSizes(1); + NPZmodels = inputSizes(3); + + %% retrieving frequency vector + if isempty(Naos_in)==0 + f1 = find(pl,'f1'); + f2 = find(pl,'f2'); + NFreqs = find(pl,'nf'); + if isempty(f1) || isempty(f2)|| isempty(NFreqs) + error('### Please specify frequency vector a start and stop frequency .'); + else + freqs = 10.^linspace(log10(f1), log10(f2), NFreqs); + end + else + freqs = aos_in(1).x; + end + + %% checking frequency vector + for i=2:numel(aos_in) + if ~isequal(freqs,aos_in(i).x) + error('there exist different frequency vectors'); + end + end + + %% reshape pzmodels and aos for input cross-spectra + if size(PZ_in,1)==NPZmodels + PZdata = zeros(Npzmodels,Npzmodels,NFreqs); + for i=1:NPZmodels + for j=1:Npzmodels + a = resp(PZ_in(i,j), freqs); + PZdata(i,j,:) = reshape(a.y,[1,NFreqs]) ; + end + end + else + error('Wrong size for field PZ_in') + end + + if size(aos_in,1)==Naos_in && size(aos_in,2)==Naos_in + AOdata = zeros(Naos_in,Naos_in,NFreqs); + for i=1:Naos_in + for j=1:Naos_in + AOdata(i,j,:) = reshape(aos_in(i,j).y,[1,NFreqs]) ; + end + end + else + error('Wrong size for field aos_in') + end + + %% SSM Transfer function + [a, b, c, d, Ts, InputName, StateName, OutputName,... + inputvarunits, ssvarunits, outputvarunits] = double(sys); %#ok<ASGLU> + resps = ssm.doBode(a, b, c, d, 2*pi*freqs, Ts); + Noutputs = numel(OutputName); + + %% power for each frequency with SVD computation + diagOnly = pl.find('DIAGONAL ONLY'); + if diagOnly + Result = zeros(Noutputs,NFreqs); + else + Result = zeros(Noutputs,Noutputs,NFreqs); + end + + for i_freq=1:NFreqs + %% contribution from aos, testing positiveness + powAO = squeeze(AOdata(:,:,i_freq)); + [U1,S1,V1] = svd(powAO.'); % testing hermitian symmetry and definite positiveness + if (sum(S1<0)>0) + error('AO covariance matrix is not positive') + elseif norm(U1-V1')>1e-15*sqrt(numel(U1)) + error('AO covariance matrix is not hermitian symmetric') + end + %% contribution from PZmodels, testing positiveness + tfPZ = squeeze(PZdata(:,:,i_freq)); + powPZ = tfPZ * tfPZ'; + %% summing all three contributions sources, computing CPSD + pow = blkdiag(powAO, powWhiteNoise, powPZ); + RespLoc = squeeze(resps(:,:,i_freq)); + noise = RespLoc * pow * RespLoc' * (2*timestep) ; + if diagOnly + Result(:,i_freq) = real(diag(noise)) ; + else + Result(:,:,i_freq) = noise ; + end + end + + %% saving in aos + if diagOnly % making a psd only + ao_out = ao.initObjectWithSize(Noutputs, 1); + for io=1:Noutputs + ao_out(io).setData(fsdata(freqs, squeeze(Result(io,:)) )); + ao_out(io).setName( ['PSD of ' , OutputName{io}]); + ao_out(io).setXunits('Hz'); + ao_out(io).setYunits(outputvarunits(io)*outputvarunits(io)/unit('Hz')); + ao_out(io).setDescription( ['PSD of ' , OutputName{io}]); + end + else % making a cpsd matrix + ao_out = ao.initObjectWithSize(Noutputs, Noutputs); + for io=1:Noutputs + for jo=1:Noutputs + ao_out(io,jo).setData(fsdata(freqs, squeeze(Result(jo,io,:)) )); + ao_out(io,jo).setXunits('Hz'); + ao_out(io,jo).setYunits(outputvarunits(io)*outputvarunits(jo)/unit('Hz')); + if io~=jo + ao_out(io,jo).setName( ['Cross PSD of ', OutputName{jo}, ' and ', OutputName{io}]); + ao_out(io,jo).setDescription( ['Cross PSD of ', OutputName{jo}, ' and ', OutputName{io}]); + else + ao_out(io,jo).setName( ['PSD of ' , OutputName{jo}]); + ao_out(io,jo).setDescription( ['PSD of ' , OutputName{jo}]); + end + end + end + end + + %% construct output matrix object + out = matrix(ao_out); + if callerIsMethod + % do nothing + else + myinfo = getInfo('None'); + out.addHistory(myinfo, pl , ssm_invars(1), inhist ); + end + + %% Set output depending on nargout + if nargout == 1; + varargout = {out}; + elseif nargout == 0; + iplot(ao_out); + else + error('Wrong number of outputs') + end +end + + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: cpsdForCorrelatedInputs.m,v 1.2 2011/05/23 14:18:20 adrien Exp $', sets, pl); + +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function pl = getDefaultPlist() + pl = ssm.getInfo('reorganize', 'for cpsdForCorrelatedInputs').plists; + pl.remove('set'); + + p = param({'covariance', 'The covariance matrix of this noise between input ports for the <i>time-discrete</i> noise model.'}, []); + pl.append(p); + + p = param({'CPSD', 'The one sided cpsd matrix of the white noise between input ports.'}, []); + pl.append(p); + + p = param({'aos', 'An array of input AOs, provides the cpsd of the input noise.'}, ao.initObjectWithSize(1,0)); + pl.append(p); + + p = param({'PZmodels', 'An array of input pzmodels, used to filter the input noise.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); + pl.append(p); + + p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); + pl.append(p); + + p = param({'f2', 'The maximum frequency. Default is Nyquist or 1Hz.'}, paramValue.EMPTY_DOUBLE); + pl.append(p); + + p = param({'f1', 'The minimum frequency. Default is f2*1e-5.'}, paramValue.EMPTY_DOUBLE); + pl.append(p); + + p = param({'nf', 'The number of frequency bins. Frequencies are scale logarithmically'}, paramValue.DOUBLE_VALUE(200)); + pl.append(p); + + p = param({'diagonal only', 'Set to true if you want the PSD instead of the CPSD'}, paramValue.TRUE_FALSE); + pl.append(p); + +end +