diff m-toolbox/classes/@ssm/parameterDiff.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/classes/@ssm/parameterDiff.m	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,192 @@
+% PARAMETERDIFF Makes a ssm that produces the output and state derivatives.
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+%
+% DESCRIPTION: PARAMETERDIFF Makes a ssm that produces the output 
+%              and state derivative in regard with specified parameters, for a specificed variation.
+%
+% CALL:        obj = obj.parameterDiff({'key1', ...}, [val1, ...]);
+%              obj = obj.parameterDiff(plist);
+%              obj = obj.parameterDiff('key', val);
+%
+% <a href="matlab:utils.helper.displayMethodInfo('ssm', 'parameterDiff')">Parameters Description</a>
+%
+% VERSION: $Id: parameterDiff.m,v 1.9 2011/04/08 08:56:22 hewitson Exp $
+% 
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+function varargout = parameterDiff(varargin)
+  
+  % Check if this is a call for parameters
+  if utils.helper.isinfocall(varargin{:})
+    varargout{1} = getInfo(varargin{3});
+    return
+  end
+  
+  %% starting initial checks
+  utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]);
+  
+  % Collect input variable names
+  in_names = cell(size(varargin));
+  for ii = 1:nargin, in_names{ii} = inputname(ii); end
+  
+  % Collect all SSMs and options
+  [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names);
+  [pl, invars2, rest]  = utils.helper.collect_objects(rest(:), 'plist');
+  if ~isempty(rest)
+    pl = combine(pl, plist(rest{:}));
+  end
+  pl = combine(pl, getDefaultPlist());
+  
+  %%% Internal call: Only one object + don't look for a plist
+  internal = strcmp(varargin{end}, 'internal');
+  
+  %% processing input
+  names = pl.find('names');
+  if ischar(names)
+    names = {names};
+  elseif ~iscellstr(names)
+    error('### Parameter names must be a cell-array of strings')
+  end
+  
+  values = pl.find('values');
+  if ~isa(values, 'double')
+    error('### param values should be a double')
+  end
+  
+  Nsys     = numel(sys);
+  sys_out  = ssm.initObjectWithSize(Nsys,1);
+  
+  %% checking data
+  Ndiff = length(names);
+  if ~(Ndiff== length(values))
+    error(['### The number of parameter names is ' num2str(Ndiff) ' and the number of parameter values is ' num2str(length(values))]);
+  end
+  if ~isa(values, 'double')
+    error(['### Parameter ''values'' is not a double array but of class ' class(values)]);
+  end
+  
+  for i_sys = 1:Nsys
+    %% getting matrix sizes
+    Nss = sys(i_sys).Nstates;
+    Ninputs = sys(i_sys).Ninputs;
+    Noutputs = sys(i_sys).Noutputs;
+    sssizes = sys(i_sys).statesizes;
+    inputsizes = sys(i_sys).inputsizes;
+    outputsizes = sys(i_sys).outputsizes;
+    
+    %% setting matrix sizes
+    amats = cell(Nss*(Ndiff+1), Nss*(Ndiff+1));
+    bmats = cell(Nss*(Ndiff+1), Ninputs);
+    cmats = cell(Noutputs*(Ndiff+1), Nss*(Ndiff+1));
+    dmats = cell(Noutputs*(Ndiff+1), Ninputs);
+    sys_num = sys(i_sys).keepParameters;
+    
+    %% assigning system matrices for nominal values
+    amats(1:Nss,1:Nss) = sys_num.amats;
+    bmats(1:Nss,1:Ninputs) = sys_num.bmats;
+    cmats(1:Noutputs,1:Nss) = sys_num.cmats;
+    dmats(1:Noutputs,1:Ninputs) = sys_num.dmats;
+    
+    outputs = sys(i_sys).outputs;
+    states = sys(i_sys).states;
+    
+    %% loop over parameters
+    for i_p = 1:Ndiff
+      % computing ssm derivative
+      sys_loc = copy(sys(i_sys), true);
+      value_loc = sys(i_sys).params.find(names{i_p}) + values(i_p);
+      sys_loc.doSetParameters(names(i_p), value_loc);
+      sys_loc.keepParameters;
+      
+      % computing derivatives of matrices
+      dAmats = ssm.blockMatRecut( ( ssm.blockMatFusion(sys_loc.amats, sssizes, sssizes) - ssm.blockMatFusion(sys_num.amats, sssizes, sssizes) )/ values(i_p) ,  sssizes, sssizes);
+      dBmats = ssm.blockMatRecut( ( ssm.blockMatFusion(sys_loc.bmats, sssizes, inputsizes) - ssm.blockMatFusion(sys_num.bmats, sssizes, inputsizes) )/ values(i_p) ,  sssizes, inputsizes);
+      dCmats = ssm.blockMatRecut( ( ssm.blockMatFusion(sys_loc.cmats, outputsizes, sssizes) - ssm.blockMatFusion(sys_num.cmats, outputsizes, sssizes) )/ values(i_p) ,  outputsizes, sssizes);
+      dDmats = ssm.blockMatRecut( ( ssm.blockMatFusion(sys_loc.dmats, outputsizes, inputsizes) - ssm.blockMatFusion(sys_num.dmats, outputsizes, inputsizes) )/ values(i_p) ,  outputsizes, inputsizes);
+      
+      % assigning matrices for derivatives
+      amats( (1+i_p*Nss):((i_p+1)*Nss), (1+i_p*Nss):((i_p+1)*Nss) ) = sys_num.amats;
+      amats( (1+i_p*Nss):((i_p+1)*Nss), 1:Nss ) = dAmats;
+      bmats( (1+i_p*Nss):((i_p+1)*Nss), 1:Ninputs ) = dBmats;
+      cmats( (1+i_p*Noutputs):((i_p+1)*Noutputs), (1+i_p*Nss):((i_p+1)*Nss) ) = sys_num.cmats;
+      dmats( (1+i_p*Noutputs):((i_p+1)*Noutputs), 1:Ninputs ) = dDmats;
+      cmats( (1+i_p*Noutputs):((i_p+1)*Noutputs), 1:Nss ) = dCmats;
+      
+      % assigning outputs
+      outputs((1+i_p*Noutputs):((i_p+1)*Noutputs)) = sys_loc.outputs ;
+      % renaming outputs
+      for i=(1+i_p*Noutputs):((i_p+1)*Noutputs)
+        outputs(i).setBlockNames( [outputs(i).name '_DIFF_' names{i_p}] );
+      end
+      
+      % assigning states
+      states((1+i_p*Nss):((i_p+1)*Nss)) = sys_loc.states ;
+      % renaming states
+      for i=(1+i_p*Nss):((i_p+1)*Nss)
+        states(i).setBlockNames( [states(i).name '_DIFF_' names{i_p}] );
+      end
+      
+      clear sys_loc
+    end
+    
+    %% proceeding parameters update
+    sys_out(i_sys).amats = amats;
+    sys_out(i_sys).bmats = bmats;
+    sys_out(i_sys).cmats = cmats;
+    sys_out(i_sys).dmats = dmats;
+    sys_out(i_sys).timestep = sys(i_sys).timestep;
+    sys_out(i_sys).name = sys(i_sys).name;
+    sys_out(i_sys).description = sys(i_sys).description;
+    sys_out(i_sys).params = plist;
+    sys_out(i_sys).outputs = outputs;
+    sys_out(i_sys).inputs = sys(i_sys).inputs;
+    sys_out(i_sys).states = states;
+    
+    sys_out(i_sys).validate;
+    
+    %% history and output arguments
+    if ~internal
+      sys_out(i_sys).addHistory(ssm.getInfo(mfilename), pl , {''}, sys(i_sys).hist );
+    end
+  end
+  
+  if nargout == numel(sys_out)
+    for ii = 1:numel(sys_out)
+      varargout{ii} = sys_out(ii);
+    end
+  else
+    varargout{1} = sys_out;
+  end
+  
+end
+
+
+
+%--------------------------------------------------------------------------
+% Get Info Object
+%--------------------------------------------------------------------------
+function ii = getInfo(varargin)
+  
+  if nargin == 1 && strcmpi(varargin{1}, 'None')
+    sets = {};
+    pl   = [];
+  else
+    sets = {'Default'};
+    pl   = getDefaultPlist;
+  end
+  % Build info object
+  ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.helper, '$Id: parameterDiff.m,v 1.9 2011/04/08 08:56:22 hewitson Exp $', sets, pl);
+end
+
+%--------------------------------------------------------------------------
+% Get Default Plist
+%--------------------------------------------------------------------------
+function pl = getDefaultPlist()
+  pl = plist();
+  
+  p = param({'names', 'A cell-array of parameter names for numerical differentiations.'}, {});
+  pl.append(p);
+  
+  p = param({'values', 'An array of parameter values for numerical step size.'}, []);
+  pl.append(p);
+end