Mercurial > hg > ltpda
diff m-toolbox/classes/@ssm/steadyState.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ssm/steadyState.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,195 @@ +% STEADYSTATE returns a possible value for the steady state of an ssm. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: STEADYSTATE returns a possible value for the steady state +% of the state space of an ssm with given inputs. +% +% CALL: [pl_out] = steadyState(sys, pl) +% +% INPUTS: +% - sys, an ssm object +% +% OUTPUTS: +% _ pl_out contains 'state', the random state position +% +% <a href="matlab:utils.helper.displayMethodInfo('ssm', 'steadyState')">Parameters Description</a> +% +% VERSION: $Id: steadyState.m,v 1.11 2011/04/08 08:56:23 hewitson Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% TO DO: Check input aos for the timestep, tsdata, and ssm.timestep +% options to be defined (NL case) +% add check if one input mach no ssm input variable +% allow use of other LTPDA functions to generate white noise + + +function varargout = steadyState(varargin) + + %% starting initial checks + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all SSMs and plists + [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); + [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); + if ~isempty(rest) + pl = combine(pl, plist(rest{:})); + end + pl = combine(pl, getDefaultPlist()); + + %% begin function body + + if numel(sys)~=1 + error('simulate needs exactly one ssm as an input') + end + if ~sys.isnumerical + error(['error because system ',sys.name,' is not numerical']); + end + timestep = sys.timestep; + if timestep==0 + error('timestep should not be 0 in steadyState!!') + end + if pl.isparam('noise variable names') + error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!') + end + sssizes = sys.sssizes; + %% collecting simulation i/o data + + constants_in = find(pl, 'constants'); + cov_in = find(pl, 'covariance'); + cpsd_in = find(pl, 'CPSD'); + noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); + [U1,S1,V1] = svd(noise_in.'); + if (sum(S1<0)>0) + error('Covariance matrix is not positive definite') + end + noise_mat = U1*sqrt(S1); + + %% modifying system's ordering + if find(pl, 'reorganize') + sys = reorganize(sys, pl, 'set', 'for simulate', 'internal', 'internal'); + end + + %% getting system's i/o sizes + inputSizes = sys.inputsizes; + + Nnoise = inputSizes(2); + Nconstants = inputSizes(3); + + if numel(diag(noise_in))~=Nnoise + error(['There are ' num2str(numel(diag(noise_in))) ' input noise variances and ' num2str(Nnoise) ' corresponding inputs indexed.' ]) + elseif numel(constants_in)~=Nconstants + error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ]) + end + + A = sys.amats{1,1}; + Bnoise = sys.bmats{1,2} * noise_mat; + Bcst = sys.bmats{1,3} * reshape(constants_in, Nconstants, 1); + + %% counting powers of 2 to use for initilization + nSteps = 500; + tSteady = find(pl, 'tSteady'); + nPow2 = nextpow2(tSteady/(nSteps*timestep)); + + %% simulation loop + A_pow2=cell(1,nPow2); + G_pow2=cell(1,nPow2); + + A_pow2{1} = A; + G_pow2{1} = Bcst; + + %% method 1 : iterate equations with growing time-step for a very long time + E_pow2=cell(1,nPow2); + E_pow2{1} = Bnoise; + for i_pow2 = 2:nPow2 + G_pow2{i_pow2} = G_pow2{i_pow2-1} + A_pow2{i_pow2-1}*G_pow2{i_pow2-1}; + E_pow2{i_pow2} = E_pow2{i_pow2-1} + A_pow2{i_pow2-1}*E_pow2{i_pow2-1}; + A_pow2{i_pow2} = A_pow2{i_pow2-1}^2; + end + lastX = zeros(size(A,1),1); + for i_pow2 = fliplr(1:nPow2) + A = A_pow2{i_pow2}; + G = G_pow2{i_pow2}; + E = E_pow2{i_pow2}; + noise_array = randn(size(E,2), nSteps); + for i_steps = 1:nSteps + lastX = A*lastX + G + E*noise_array(:,i_steps) ; + end + end + + %% method 2 : compute the limit state-mean and covariance as i_pow2 tends to infinity + % P_pow2=cell(1,nPow2); + % P_pow2{1} = Bnoise*Bnoise.'; + % for i_pow2 = 2:nPow2 + % G_pow2{i_pow2} = G_pow2{i_pow2-1} + A_pow2{i_pow2-1}*G_pow2{i_pow2-1}; % taking step response to 2 longer time; + % P_pow2{i_pow2} = P_pow2{i_pow2-1} + A_pow2{i_pow2-1}*P_pow2{i_pow2-1}*(A_pow2{i_pow2-1}.');% taking state covariance to 2 longer time; + % A_pow2{i_pow2} = A_pow2{i_pow2-1}^2; + % end + % [U1,S1,V1] = svd(P_pow2{nPow2}); + % lastX = U1*sqrt(S1)*randn(size(A,1),1) + G_pow2{nPow2}; + + %% construct output analysis object + plist_out = plist('state', ssm.blockMatRecut(lastX,sssizes,1) ); + varargout = {plist_out}; +end + + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: steadyState.m,v 1.11 2011/04/08 08:56:23 hewitson Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function pl = getDefaultPlist() + pl = plist(); + + p = param({'cpsd variable names', 'A cell-array of strings specifying the desired input variable names.'}, {} ); + pl.append(p); + + p = param({'cpsd', 'The covariance of this noise between input ports for the <i>time-continuous</i> noise model.'}, []); + pl.append(p); + + p = param({'covariance variable names', 'A cell-array of strings specifying the desired input variable names.'}, {} ); + pl.append(p); + + p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-continuous</i> noise model.'}, []); + pl.append(p); + + p = param({'constant variable names', 'A cell-array of strings of the desired input variable names.'}, {}); + pl.append(p); + + p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); + pl.append(p); + + p = param({'tSteady', 'The settling time used in the calculation, in the same unit as the ssm''s timestep'}, paramValue.DOUBLE_VALUE(10^6) ); + pl.append(p); + + p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); + pl.append(p); + +end +