Mercurial > hg > ltpda
diff m-toolbox/html_help/help/ug/ao_convert_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/html_help/help/ug/ao_convert_content.html Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,80 @@ +<!-- $Id: ao_convert_content.html,v 1.3 2008/03/03 09:08:10 hewitson Exp $ --> + <p> + In some cases it is desirable to build AOs 'by hand' from existing data files. If the data file + doesn't conform to one of the existing AO constructors, then a conversion script can easily be + written to create AOs from your data files. + </p> + <p>The following example shows how to convert an ASCII data file into Analysis Objects. The data file + has 4 columns representing 4 different data channels. All 4 channels are sampled at the same rate of + 10Hz. The conversion function returns 4 AOs.</p> + + <div class="fragment"><pre> <span class="code"> function b = myConverter(filename, fs)</span> + + <span class="comment">% MYCONVERTER converts a multi-column ASCII data file into multiple AOs.</span> + <span class="comment">%</span> + <span class="comment">% usage: b = myConverter(filename, fs)</span> + <span class="comment">%</span> + <span class="comment">% Inputs:</span> + <span class="comment">% filename - name of input data file</span> + <span class="comment">% fs - sample rate of input data</span> + <span class="comment">%</span> + <span class="comment">% Outputs:</span> + <span class="comment">% b - vector of AOs</span> + <span class="comment">%</span> + <span class="comment">%</span> + + <span class="comment">% Load the data from text file</span> + data_in = load(filename); + ncols = size(data_in, 2); + + <span class="comment">% Create AOs</span> + b = []; + <span class="keyword">for</span> j=1:ncols + + <span class="comment">% Get this column of data</span> + d = data_in(:,j); + + <span class="comment">% name for this data</span> + dataName = [<span class="string">'column'</span> num2str(j)]; + + <span class="comment">% Make tsdata object</span> + ts = tsdata(d, fs); + <span class="comment">% set name of data object</span> + ts = set(ts, <span class="string">'name'</span>, dataName); + <span class="comment">% set xunits to seconds</span> + ts = set(ts, <span class="string">'xunits'</span>, <span class="string">'s'</span>); + <span class="comment">% set xunits to Volts</span> + ts = set(ts, <span class="string">'yunits'</span>, <span class="string">'V'</span>); + + <span class="comment">% make history object</span> + h = history(<span class="string">'myConverter'</span>, <span class="string">'0.1'</span>, plist(param(<span class="string">'filename'</span>, filename))); + + <span class="comment">% make AO</span> + a = ao(ts, h); + + <span class="comment">% set AO name</span> + a = set(a, <span class="string">'name'</span>, dataName); + + <span class="comment">% add to output vector</span> + b = [b a]; + + <span class="keyword">end</span></pre></div> + + <br> + <p> + The script works by loading the four columns of data from the ASCII file into a matrix. The + script then loops over the number of columns and creates an AO for each column. + </p> + <p>First a time-series (<tt>tsdata</tt>) object is made from the data in a column and given the + input sample rate of the data. The 'name', 'xunits', and 'yunits' fields of the time-series data + object are then set using calls to the <tt>set</tt> method of the <tt>tsdata</tt> class. + </p> + <p> + Next a history object is made with its 'name' set to 'myConverter', the version set to '0.1', + and the input filename is recorded in a parameter list attached to the history object. + </p> + <p> + Following the creation of the data object and the history object, we can then create an + Analysis Object. The name of the AO is then set and the object is added to a vector that is + output by the function. + </p>