Mercurial > hg > ltpda
diff m-toolbox/html_help/help/ug/constructor_examples_rational_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/html_help/help/ug/constructor_examples_rational_content.html Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,435 @@ +<!-- $Id: constructor_examples_rational_content.html,v 1.1 2009/02/27 16:51:57 ingo Exp $ --> + +<!-- -------------------------------------------------- --> +<!-- --------------- BEGIN CONTENT FILE --------------- --> +<!-- -------------------------------------------------- --> + + +<!-- --------------- Link box: begin --------------- --> +<table border="0" summary="Simple list" class="simplelist_nottable_last"> + <tr> + <td> + <a href="constructor_examples_rational.html#copy">Copy an rational object</a> + </td> + </tr> + <tr> + <td> + <a href="constructor_examples_rational.html#xml_file">Construct an rational object by loading the object from a file</a> + </td> + </tr> + <tr> + <td> + <a href="constructor_examples_rational.html#rational">Construct an rational object from an parfrac object</a> + </td> + </tr> + <tr> + <td> + <a href="constructor_examples_rational.html#pzmodel">Construct an rational object from a pole/zero model</a> + </td> + </tr> + <tr> + <td> + <a href="constructor_examples_rational.html#coeffs">Construct an rational object from numerator and denominator coefficients</a> + </td> + </tr> + <tr> + <td> + <a href="constructor_examples_rational.html#plist">Construct an rational object from a parameter list object (PLIST)</a> + </td> + </tr> +</table> + +<!-- --------------- NEXT EXAMPLE --------------- --> + +<hr> +<h2 class="title"><a name="copy"></a>Copy an rational object</h2> +<p>The following example creates a copy of an rational object (blue command).</p> +<div class="fragment"><pre class="programlisting"> +>> ra1 = rational([1 2 3], [4 5 6 7], <span class="string">'my rational'</span>); +<span class="blue">>> ra2 = rational(ra1)</span> +---- rational 1 ---- +model: my rational +num: [1 2 3] +den: [4 5 6 7] +iunits: [] +ounits: [] +-------------------- +</pre></div> +<br></br> +<p>REMARK: The following command copies only the handle of an object and doesn't create a copy of the object (as above). This means that everything that happens to the copy or original happens to the other object.</p> +<div class="fragment"><pre class="programlisting"> +>> ra1 = rational() +---- rational 1 ---- +model: none +num: [] +den: [] +iunits: [] +ounits: [] +-------------------- +>> ra2 = ra1; +>> ra2.setName(<span class="string">'my new name'</span>) +---- rational 1 ---- +model: <span class="string">my new name</span> +num: [1 2 3] +den: [4 5 6 7] +iunits: [] +ounits: [] +-------------------- +</pre></div> +<br></br> +<p>If we display ra1 again then we see that the property 'name' was changed although we only have changed ra2.</p> +<div class="fragment"><pre class="programlisting"> +>> ra1 +---- rational 1 ---- +model: <span class="string">my new name</span> +num: [1 2 3] +den: [4 5 6 7] +iunits: [] +ounits: [] +-------------------- +</pre></div> + + +<!-- --------------- NEXT EXAMPLE --------------- --> + +<hr> +<h2 class="title"><a name="xml_file"></a>Construct an rational object by loading the object from a file</h2> +<p>The following example creates a new rational object by loading the object from disk.</p> +<div class="fragment"><pre class="programlisting"> +ra = rational(<span class="string">'rational_object.mat'</span>) +ra = rational(<span class="string">'rational_object.xml'</span>) +</pre></div> +<p>or in a <tt>PLIST</tt></p> +<div class="fragment"><pre class="programlisting"> +pl = plist(<span class="string">'filename'</span>, <span class="string">'rational_object.xml'</span>); +ra = rational(pl) +</pre></div> + + +<!-- --------------- NEXT EXAMPLE --------------- --> + +<hr> +<h2 class="title"><a name="rational"></a>Construct an rational object from an parfrac object</h2> +<p>The following example creates a new rational object from an parfrac object.</p> +<div class="fragment"><pre class="programlisting"> +>> pf = parfrac([1 2+1i 2-1i], [6 1+3i 1-3i], 3, <span class="string">'my parfrac'</span>) +---- parfrac 1 ---- +model: my parfrac +res: [1;2+i*1;2-i*1] +poles: [6;1+i*3;1-i*3] +dir: 3 +pmul: [1;1;1] +iunits: [] +ounits: [] +------------------- +>> ra = rational(pf) +---- rational 1 ---- +model: rational(my parfrac) +num: [3 -19 30 -110] +den: [1 -8 22 -60] +iunits: [] +ounits: [] +-------------------- +</pre></div> +<p>or in a plist</p> +<div class="fragment"><pre class="programlisting"> +>> pf = parfrac([1 2+1i 2-1i], [6 1+3i 1-3i], 3, <span class="string">'my parfrac'</span>); +>> pl = plist(<span class="string">'rational'</span>, rat) +>> ra = rational(pl) +</pre></div> + + +<!-- --------------- NEXT EXAMPLE --------------- --> + +<hr> +<h2 class="title"><a name="pzmodel"></a>Construct an rational object from a pole/zero model</h2> +<p>The following example creates a new rational object from a pole/zero model.</p> +<div class="fragment"><pre class="programlisting"> +>> pzm = pzmodel(1, {1 2 3}, {4 5}, <span class="string">'my pzmodel'</span>) +---- pzmodel 1 ---- + name: my pzmodel + gain: 1 + delay: 0 + iunits: [] + ounits: [] +pole 001: (f=1 Hz,Q=NaN) +pole 002: (f=2 Hz,Q=NaN) +pole 003: (f=3 Hz,Q=NaN) +zero 001: (f=4 Hz,Q=NaN) +zero 002: (f=5 Hz,Q=NaN) +------------------- +>> ra = rational(pzm) +---- rational 1 ---- +model: rational(None) +num: [0.0012 0.0716 1] +den: [0.0001 0.0036 0.0401 0.2122 1] +iunits: [] +ounits: [] +-------------------- +</pre></div> +<p>or in a plist</p> +<div class="fragment"><pre class="programlisting"> +>> pzm = pzmodel(1, {1 2 3}, {4 5}, <span class="string">'my pzmodel'</span>) +>> pl = plist(<span class="string">'pzmodel'</span>, pzm) +>> ra = rational(pl) +</pre></div> + + +<!-- --------------- NEXT EXAMPLE --------------- --> + +<hr> +<h2 class="title"><a name="coeffs"></a>Construct an rational object from numerator and denominator coefficients</h2> +<p>The following example creates a new rational direct from the numerator and denominator coefficients.</p> +<div class="fragment"><pre class="programlisting"> +>> num = [1 2 3]; +>> den = [4 5 6]; +>> name = <span class="string">'my rational'</span>; +>> iunits = <span class="string">'Hz'</span>; +>> ounits = <span class="string">'V'</span>; + +>> ra = rational(num, den) +>> ra = rational(num, den, name) +>> ra = rational(num, den, name, iunits, ounits) +---- rational 1 ---- +model: my rational +num: [1 2 3] +den: [4 5 6] +iunits: [Hz] +ounits: [V] +-------------------- +</pre></div> + + +<!-- --------------- NEXT EXAMPLE --------------- --> + +<hr> +<h2 class="title"><a name="plist"></a>Construct an rational object from a parameter list (<tt>plist</tt>)</h2> +<p>Constructs an rational object from the description given in the parameter list.</p> + +<!-- --------------- Link box: begin --------------- --> +<table border="0" summary="Simple list" class="simplelist_nottable_last"> + <tr> + <td> + <a href="constructor_examples_rational.html#hostname">Use the key word 'hostname'</a> + </td> + </tr> + <tr> + <td> + <a href="constructor_examples_rational.html#pl_coeffs">Use the key word 'num' or 'den'</a> + </td> + </tr> +</table> +<!-- --------------- Link box: end --------------- --> + + +<!-- --------------- 'hostname' --------------- --> + +<hr> +<h3 class="title"><a name="hostname"></a>Use the key word 'hostname'</h3> +<p>Construct an rational object by retrieving it from a LTPDA repository.</p> +<p>The relevant parameters are:</p> +<p> + <table cellspacing="0" border="0" cellpadding="2" class="simplelist_nottable_last" width="80%"> + <colgroup> + <col width="25%"/> + <col width="75%"/> + </colgroup> + <thead> + <tr valign="top"> + <th class="subcategorylist">Key</th> + <th class="subcategorylist">Description</th> + </tr> + </thead> + <tbody> + <tr valign="top"> + <td> + <p>'hostname'</p> + </td> + <td> + <p>the repository hostname. [default: 'localhost']</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'database'</p> + </td> + <td> + <p>The database name [default: 'ltpda']</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'id'</p> + </td> + <td> + <p>A vector of object IDs. [default: []]</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'cid'</p> + </td> + <td> + <p>Retrieve all rational objects from a particular collection</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'binary'</p> + </td> + <td> + <p>Set to 'yes' to retrieve from stored binary representation (not always available). [default: yes]</p> + </td> + </tr> + </tbody> + </table> +</p> +<div class="fragment"><pre class="programlisting"> +pl = plist(<span class="string">'hostname'</span>, <span class="string">'130.75.117.67'</span>, <span class="string">'database'</span>, <span class="string">'ltpda_test'</span>, <span class="string">'id'</span>, 1) +a1 = rational(pl) +</pre></div> + + +<!-- --------------- 'direct_terms' --------------- --> + +<hr> +<h3 class="title"><a name="direct_terms"></a>Use the key word 'num' or 'den'</h3> +<p>Construct an rational object direct from the coefficients.<br></br> +The relevant parameters are:</p> +<p> + <table cellspacing="0" border="0" cellpadding="2" class="simplelist_nottable_last" width="80%"> + <colgroup> + <col width="25%"/> + <col width="75%"/> + </colgroup> + <thead> + <tr valign="top"> + <th class="subcategorylist">Key</th> + <th class="subcategorylist">Description</th> + </tr> + </thead> + <tbody> + <tr valign="top"> + <td> + <p>'num'</p> + </td> + <td> + <p>numerator coefficients [default: []]</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'den'</p> + </td> + <td> + <p>denominator coefficients [default: []]</p> + </td> + </tr> + </tbody> + </table> +</p> +<p>You can also specify optional parameters:</p> +<p> + <table cellspacing="0" border="0" cellpadding="2" class="simplelist_nottable_last" width="80%"> + <colgroup> + <col width="25%"/> + <col width="75%"/> + </colgroup> + <thead> + <tr valign="top"> + <th class="subcategorylist">Key</th> + <th class="subcategorylist">Description</th> + </tr> + </thead> + <tbody> + <tr valign="top"> + <td> + <p>'name'</p> + </td> + <td> + <p>name of the rational object [default: 'none']</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'xunits'</p> + </td> + <td> + <p>unit of the x-axis</p> + </td> + </tr> + <tr valign="top"> + <td> + <p>'yunits'</p> + </td> + <td> + <p>unit of the y-axis</p> + </td> + </tr> + </tbody> + </table> +</p> +<div class="fragment"><pre class="programlisting"> +num = [1 2 3]; +den = [4 5 6]; +name = <span class="string">'my rational'</span>; +iunits = <span class="string">'Hz'</span>; +ounits = <span class="string">'V'</span>; + +pl = plist(<span class="string">'num'</span>, num, <span class="string">'den'</span>, den); +ra = rational(pl) +---- rational 1 ---- +model: None +num: [1 2 3] +den: [4 5 6] +iunits: [] +ounits: [] +-------------------- + +pl = plist(<span class="string">'num'</span>, num, <span class="string">'den'</span>, den, <span class="string">'name'</span>, name, <span class="string">'iunits'</span>, iunits, <span class="string">'ounits'</span>, ounits); +pf = rational(pl) +---- rational 1 ---- +model: my rational +num: [1 2 3] +den: [4 5 6] +iunits: [Hz] +ounits: [V] +-------------------- +</pre></div> + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +