Mercurial > hg > ltpda
diff m-toolbox/html_help/help/ug/convert_models_content.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/html_help/help/ug/convert_models_content.html Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,34 @@ +The different constructors from each transfer function representations accept as +an input a model from a another representation so that they can all be converted +between the different representations. In the current LTPDA version, this applies +for pole/zero model and rational representation. Following versions will cover the +partial fraction representation. This is shown in the following transformation table: + +<div align="center"> + <img src="images/TransformTable.png" alt="Pole/zero model TF" border="3"> +</div> + +<h2>From pzmodel to rational</a></h2> +You can transform a <tt>pzmodel</tt> into a <tt>rational</tt> by typing: +<br> +<div class="fragment"><pre> + >> rat = rational(pzmodel) +</pre></div> +<br> + +<h2>From rational to pzmodel</a></h2> +You can transform a <tt>rational</tt> into a <tt>pzmodel</tt> by typing: +<br> +<div class="fragment"><pre> + >> rat = pzmodel(rational) +</pre></div> +<br> + +<h2>Algorithm</a></h2> +To translate from <tt>rational</tt> to <tt>pzmodel</tt> representation we need to +compute the roots of a polynomial and the inverse operation is performed going from +<tt>pzmodel</tt> to <tt>rational</tt>. More information about the algorithm used can be +found in MATLAB's functions <a href="matlab:doc('poly')">poly</a> and +<a href="matlab:doc('roots')">roots</a>. + +