diff m-toolbox/html_help/help/ug/ltpda_training_topic_5_3.html @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/html_help/help/ug/ltpda_training_topic_5_3.html	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,166 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
+   "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">
+
+<html lang="en">
+<head>
+  <meta name="generator" content=
+  "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org">
+  <meta http-equiv="Content-Type" content=
+  "text/html; charset=us-ascii">
+
+  <title>Fitting time series with polynomials (LTPDA Toolbox)</title>
+  <link rel="stylesheet" href="docstyle.css" type="text/css">
+  <meta name="generator" content="DocBook XSL Stylesheets V1.52.2">
+  <meta name="description" content=
+  "Presents an overview of the features, system requirements, and starting the toolbox.">
+  </head>
+
+<body>
+  <a name="top_of_page" id="top_of_page"></a>
+
+  <p style="font-size:1px;">&nbsp;</p>
+
+  <table class="nav" summary="Navigation aid" border="0" width=
+  "100%" cellpadding="0" cellspacing="0">
+    <tr>
+      <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td>
+
+      <td valign="baseline" align="right"><a href=
+      "ltpda_training_topic_5_2.html"><img src="b_prev.gif" border="0" align=
+      "bottom" alt="Generation of noise with given PSD"></a>&nbsp;&nbsp;&nbsp;<a href=
+      "ltpda_training_topic_5_4.html"><img src="b_next.gif" border="0" align=
+      "bottom" alt="Non-linear least squares fitting of time series"></a></td>
+    </tr>
+  </table>
+
+  <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Fitting time series with polynomials</h1>
+  <hr>
+  
+  <p>
+	
+<p>
+  Fitting time series with polynomials exploits the function <tt>ao/polyfit</tt>.
+  Details on the agorithm can be found in the <a href="sigproc_polyfit.html">appropriate help page</a>.
+</p>
+
+<h2> Fitting time series with polynomials </h2>
+
+<p>
+  During this exercise we will:
+  <ol>
+    <li> Load time series noise
+    <li> Fit data with ao/polyfit
+    <li> Check results
+  </ol>
+</p>
+
+<p>
+  Let's open a new editor window and load test data.
+</p>
+
+<div class="fragment"><pre>
+    a = ao(plist(<span class="string">'filename'</span>, <span class="string">'topic5/T5_Ex04_TestNoise.xml'</span>));
+    a.setName;
+</pre></div>
+
+<p>
+  Try to fit data with <tt>ao/polyfit</tt>. We decide to fit with a 6th order polynomial.
+</p>
+
+<div class="fragment"><pre>
+    plfit = plist(<span class="string">'N'</span>, 6);
+    p     = polyfit(a, plfit);
+</pre></div>
+<p>
+  The output of the polifit method is a parameter estimation object (pest-object). This object contains the coefficients of the fitted polynomial.
+</p>
+<div class="fragment"><pre>
+---- pest 1 ----
+       name: polyfit(a)
+param names: {'P1', 'P2', 'P3', 'P4', 'P5', 'P6', 'P7'}
+          y: [9.17e-15;-1.01e-11;1.15e-08;-2.84e-06;-0.00444;0.138;47.5]
+         dy: []
+     yunits: [s^(-6)][s^(-5)][s^(-4)][s^(-3)][s^(-2)][s^(-1)][]
+        pdf: []
+        cov: []
+       corr: []
+      chain: []
+       chi2: []
+        dof: 993
+     models: smodel(P1*X.^6 + P2*X.^5 + P3*X.^4 + P4*X.^3 + P5*X.^2 + P6*X.^1 + P7*X.^0)
+description:
+       UUID: 58a56ecf-24e8-40ed-a42c-ef6832c747c3
+----------------
+</pre></div>
+
+<p>
+  Once we have the pest object with the coefficients, we can evaluate the pest-object. In order to construct 
+  an object with the same time base we can pass the input AO, and specify to use its 'x' field to build the 'x' field
+  of the output.
+</p>
+
+<div class="fragment"><pre>
+    b = p.eval(a, plist(<span class="string">'type'</span>, <span class="string">'tsdata'</span>, <span class="string">'xfield'</span>, <span class="string">'x'</span>))
+    b.setName;
+</pre></div>
+
+<p>
+  Now, check fit result with some plotting. Compare data with fitted model
+  and look at the fit residuals.
+</p>
+
+<div class="fragment"><pre>
+    iplot(a,b)
+    iplot(a-b)
+</pre></div>
+
+<p>
+  <div align="center">
+    <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_3_1.png" align="center" border="0">
+  </div>
+  <div align="center">
+    <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_3_2.png" align="center" border="0">
+  </div>
+</p>
+
+<p>
+  You could also try using <tt>ao/detrend</tt> on the input time-series to yield
+  a very similar result as that shown in the last plot.
+</p>
+
+
+
+
+
+
+
+
+
+
+
+  </p>
+
+  <br>
+  <br>
+  <table class="nav" summary="Navigation aid" border="0" width=
+  "100%" cellpadding="0" cellspacing="0">
+    <tr valign="top">
+      <td align="left" width="20"><a href="ltpda_training_topic_5_2.html"><img src=
+      "b_prev.gif" border="0" align="bottom" alt=
+      "Generation of noise with given PSD"></a>&nbsp;</td>
+
+      <td align="left">Generation of noise with given PSD</td>
+
+      <td>&nbsp;</td>
+
+      <td align="right">Non-linear least squares fitting of time series</td>
+
+      <td align="right" width="20"><a href=
+      "ltpda_training_topic_5_4.html"><img src="b_next.gif" border="0" align=
+      "bottom" alt="Non-linear least squares fitting of time series"></a></td>
+    </tr>
+  </table><br>
+
+  <p class="copy">&copy;LTP Team</p>
+</body>
+</html>