Mercurial > hg > ltpda
diff m-toolbox/html_help/help/ug/sigproc_example_ao_linlsqsvd.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/html_help/help/ug/sigproc_example_ao_linlsqsvd.html Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,160 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" + "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> + +<html lang="en"> +<head> + <meta name="generator" content= + "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> + <meta http-equiv="Content-Type" content= + "text/html; charset=us-ascii"> + + <title>Linear least squares with singular value deconposition - single experiment (LTPDA Toolbox)</title> + <link rel="stylesheet" href="docstyle.css" type="text/css"> + <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> + <meta name="description" content= + "Presents an overview of the features, system requirements, and starting the toolbox."> + </head> + +<body> + <a name="top_of_page" id="top_of_page"></a> + + <p style="font-size:1px;"> </p> + + <table class="nav" summary="Navigation aid" border="0" width= + "100%" cellpadding="0" cellspacing="0"> + <tr> + <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> + + <td valign="baseline" align="right"><a href= + "sigproc_linear_param_estimation_svd.html"><img src="b_prev.gif" border="0" align= + "bottom" alt="Linear Parameter Estimation with Singular Value Decomposition"></a> <a href= + "sigproc_example_matrix_linlsqsvd.html"><img src="b_next.gif" border="0" align= + "bottom" alt="Linear least squares with singular value deconposition - multiple experiments"></a></td> + </tr> + </table> + + <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Linear least squares with singular value deconposition - single experiment</h1> + <hr> + + <p> + + + +<p>Determine the coefficients of a linear combination of noises and comapre with lscov</p> +<h2>Contents</h2> +<div> + <ul> + <li><a href="#1">Make data</a></li> + <li><a href="#2">Do fit and check results</a></li> + </ul> +</div> + +<h2>Make data<a name="1"></a></h2> + +<div class="fragment"><pre> + + fs = 10; + nsecs = 10; + + <span class="comment">% Elements of the fit basis</span> + B1 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B1.setName; + B2 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B2.setName; + B3 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B3.setName; + + <span class="comment">% random additive noise</span> + n = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'m'</span>)); + + <span class="comment">% coefficients of the linear combination</span> + c1 = ao(1,plist(<span class="string">'yunits'</span>,<span class="string">'m/T'</span>)); + c1.setName; + + c2 = ao(2,plist(<span class="string">'yunits'</span>,<span class="string">'m/T'</span>)); + c2.setName; + + c3 = ao(3,plist(<span class="string">'yunits'</span>,<span class="string">'m T^-1'</span>)); + c3.setName; + + <span class="comment">% build output of linear system</span> + y = c1*B1 + c2*B2 + c3*B3 + n; + y.simplifyYunits; + +</pre></div> + + +<h2>Do fit and check results<a name="2"></a></h2> + +<div class="fragment"><pre> + + <span class="comment">% Get a fit with linlsqsvd</span> + pobj1 = linlsqsvd(B1, B2, B3, y) + +</pre></div> + +<div class="fragment"><pre> + + ---- pest 1 ---- + name: a1*B1+a2*B2+a3*B3 + param names: {'a1', 'a2', 'a3'} + y: [0.81162366736073077;1.8907151217948008;3.0098623857384701] + dy: [0.091943725803872112;0.089863977231447567;0.097910574305897308] + yunits: [m T^(-1)][m T^(-1)][m T^(-1)] + pdf: [] + cov: [3x3], ([0.00845364871469762 0.000268768332741779 0.000180072770333592;0.000268768332741779 0.00807553440385413 0.00125972375325089;0.000180072770333592 0.00125972375325089 0.00958648056091064]) + corr: [3x3], ([1 0.0325289738130578 0.020003055941376;0.0325289738130578 1 0.143172656986983;0.020003055941376 0.143172656986983 1]) + chain: [] + chi2: 0.87276552675043451 + dof: 97 + models: B1/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC, B2/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC, B3/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC + description: + UUID: b8628843-a1e8-4815-b69b-90efdadc16c2 + ---------------- + +</pre></div> + +<div class="fragment"><pre> + + <span class="comment">% do linear combination: using eval</span> + yfit = pobj1.eval(B1, B2, B3); + + <span class="comment">% Plot - compare data with fit result</span> + iplot(y, yfit) + +</pre></div> + +<p> + <div align="center"> + <IMG src="images/example_ao_linlsqsvd_01.png" align="center" border="0"> + </div> +</p> + + + + </p> + + <br> + <br> + <table class="nav" summary="Navigation aid" border="0" width= + "100%" cellpadding="0" cellspacing="0"> + <tr valign="top"> + <td align="left" width="20"><a href="sigproc_linear_param_estimation_svd.html"><img src= + "b_prev.gif" border="0" align="bottom" alt= + "Linear Parameter Estimation with Singular Value Decomposition"></a> </td> + + <td align="left">Linear Parameter Estimation with Singular Value Decomposition</td> + + <td> </td> + + <td align="right">Linear least squares with singular value deconposition - multiple experiments</td> + + <td align="right" width="20"><a href= + "sigproc_example_matrix_linlsqsvd.html"><img src="b_next.gif" border="0" align= + "bottom" alt="Linear least squares with singular value deconposition - multiple experiments"></a></td> + </tr> + </table><br> + + <p class="copy">©LTP Team</p> +</body> +</html>