Mercurial > hg > ltpda
diff m-toolbox/html_help/help/ug/sigproc_example_matrix_linlsqsvd.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/html_help/help/ug/sigproc_example_matrix_linlsqsvd.html Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,174 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" + "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> + +<html lang="en"> +<head> + <meta name="generator" content= + "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> + <meta http-equiv="Content-Type" content= + "text/html; charset=us-ascii"> + + <title>Linear least squares with singular value deconposition - multiple experiments (LTPDA Toolbox)</title> + <link rel="stylesheet" href="docstyle.css" type="text/css"> + <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> + <meta name="description" content= + "Presents an overview of the features, system requirements, and starting the toolbox."> + </head> + +<body> + <a name="top_of_page" id="top_of_page"></a> + + <p style="font-size:1px;"> </p> + + <table class="nav" summary="Navigation aid" border="0" width= + "100%" cellpadding="0" cellspacing="0"> + <tr> + <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> + + <td valign="baseline" align="right"><a href= + "sigproc_example_ao_linlsqsvd.html"><img src="b_prev.gif" border="0" align= + "bottom" alt="Linear least squares with singular value deconposition - single experiment"></a> <a href= + "sigproc_example_matrix_linfitsvd.html"><img src="b_next.gif" border="0" align= + "bottom" alt="Iterative linear parameter estimation for multichannel systems - symbolic system model in frequency domain"></a></td> + </tr> + </table> + + <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Linear least squares with singular value deconposition - multiple experiments</h1> + <hr> + + <p> + + + +<p>Determine the coefficients of a linear combination of noises</p> + +<h2>Contents</h2> +<div><ul><li><a href="#1">Make data</a></li> +<li><a href="#2">Do fit</a></li></ul></div> + +<h2>Make data<a name="1"></a></h2> + +<div class="fragment"><pre> + + fs = 10; + nsecs = 10; + + <span class="comment">% fit basis for 2 experiments case</span> + B1 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B1.setName; + B2 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B2.setName; + B3 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B3.setName; + B4 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'T'</span>)); + B4.setName; + + C1 = matrix(B1,B2,plist(<span class="string">'shape'</span>,[2,1])); + C1.setName; + C2 = matrix(B3,B4,plist(<span class="string">'shape'</span>,[2,1])); + C2.setName; + + <span class="comment">% make additive noise</span> + n1 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'m'</span>)); + n1.setName; + n2 = ao(plist(<span class="string">'tsfcn'</span>, <span class="string">'randn(size(t))'</span>, <span class="string">'fs'</span>, fs, <span class="string">'nsecs'</span>, nsecs, <span class="string">'yunits'</span>, <span class="string">'m'</span>)); + n2.setName; + + <span class="comment">% coefficients of the linear combination</span> + a1 = ao(1,plist(<span class="string">'yunits'</span>,<span class="string">'m/T'</span>)); + a1.setName; + a2 = ao(2,plist(<span class="string">'yunits'</span>,<span class="string">'m/T'</span>)); + a2.setName; + + <span class="comment">% assign output values</span> + <span class="comment">% y is a matrix containing the outputs of two experiments:</span> + y1 = a1*B1 + a2*B3 + n1; + y2 = a1*B2 + a2*B4 + n2; + y = matrix(y1,y2,plist(<span class="string">'shape'</span>,[2,1])); + +</pre></div> + + +</pre><h2>Do fit<a name="2"></a></h2> + + <div class="fragment"><pre> + + <span class="comment">% Get a fit with linlsqsvd</span> + pobj = linlsqsvd(C1, C2, y) + +</pre></div> + +<div class="fragment"><pre> + + ---- pest 1 ---- + name: a1*C1+a2*C2 + param names: {'a1', 'a2'} + y: [0.97312642877028477;2.0892132651873916] + dy: [0.06611444020240001;0.065007088662104057] + yunits: [T^(-1) m][T^(-1) m] + pdf: [] + cov: [2x2], ([0.00437111920327673 -0.000390118937121542;-0.000390118937121542 0.00422592157632266]) + corr: [] + chain: [] + chi2: 0.85210029717685576 + dof: 198 + models: matrix(B1/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC, B2/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC), matrix(B3/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC, B4/tsdata Ndata=[100x1], fs=10, nsecs=10, t0=1970-01-01 00:00:00.000 UTC) + description: + UUID: 545c9699-e749-40d5-bbe1-1322599c9c5d + ---------------- + +</pre></div> + +<div class="fragment"><pre> + + <span class="comment">% do linear combination: using eval</span> + yfit = pobj.eval; + + <span class="comment">% extract objects</span> + yfit1 = getObjectAtIndex(yfit,1); + yfit2 = getObjectAtIndex(yfit,2); + + <span class="comment">% Plot - compare data with fit</span> + iplot(y1, yfit1) + iplot(y2, yfit2) + +</pre></div> + +<p> + <div align="center"> + <IMG src="images/example_matrix_linlsqsvd_01.png" align="center" border="0"> + </div> +</p> +<p> + <div align="center"> + <IMG src="images/example_matrix_linlsqsvd_02.png" align="center" border="0"> + </div> +</p> + + + </p> + + <br> + <br> + <table class="nav" summary="Navigation aid" border="0" width= + "100%" cellpadding="0" cellspacing="0"> + <tr valign="top"> + <td align="left" width="20"><a href="sigproc_example_ao_linlsqsvd.html"><img src= + "b_prev.gif" border="0" align="bottom" alt= + "Linear least squares with singular value deconposition - single experiment"></a> </td> + + <td align="left">Linear least squares with singular value deconposition - single experiment</td> + + <td> </td> + + <td align="right">Iterative linear parameter estimation for multichannel systems - symbolic system model in frequency domain</td> + + <td align="right" width="20"><a href= + "sigproc_example_matrix_linfitsvd.html"><img src="b_next.gif" border="0" align= + "bottom" alt="Iterative linear parameter estimation for multichannel systems - symbolic system model in frequency domain"></a></td> + </tr> + </table><br> + + <p class="copy">©LTP Team</p> +</body> +</html>