diff m-toolbox/html_help/help/ug/spikeclean_content.html @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/html_help/help/ug/spikeclean_content.html	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,112 @@
+<h2>Description</h2>
+<p>
+  Spikes in data due to different nature can be removed, if desired, from the original data. LTPDA <a href="matlab:doc('ao/spikecleaning')"><tt>spikecleaning</tt></a> detects and replaces
+  spikes of the input AOs. A spike in data is defined as a single sample exceeding a certain value (usually, the
+  floor noise of the data) defined by the user:
+</p>
+<br>
+<p>
+  <div align="center">
+    <IMG src="images/spike10x.png" width="147" height="15" border="0" />
+  </div>
+</p>
+<br>
+<p>
+  where <IMG src="images/spike41x.png" width="50" height="14" border="0" /> is the input data high-pass filtered, <IMG src="images/spike42x.png" width="34" height="13" border="0"/> is a value defined by the user (by default is 3.3) and <IMG src="images/spike43x.png" width="35" height="8" border="0"/> is the standard deviation of <IMG src="images/spike41x.png" width="50" height="14" border="0" /> . In consequence, a spike is defined as the value that exceeds the floor noise of the data by a factor <IMG src="images/spike42x.png" width="34" height="13" border="0"/>, the higher of this parameter the more difficult to "detect" a spike.
+  <br>
+  <br>
+  <h2>Syntax</h2>
+</p>
+<div class="fragment"><pre>
+    <br>
+    b = spikecleaning(a, pl)
+  </pre>
+</div>
+<h2>Parameters</h2>
+<p>
+  The following parameters can be set in this method:
+  <ul>
+    <li> <tt>'kspike'</tt> - set the <IMG src="images/spike42x.png" width="34" height="13" border="0"/> value (default is 3.3) </li>
+    <li> <tt>'method'</tt> - method used to replace the "spiky" sample. Three methods are available ---see below for details---:</li>
+    <ul>
+      <li> <tt>'random'</tt> </li>
+      <li> <tt>'mean'</tt> </li>
+      <li> <tt>'previous'</tt> </li>
+    </ul>
+    <li> <tt>'fc'</tt> - frequency cut-off of the high-pass IIR filter (default is 0.025) </li>
+    <li> <tt>'order'</tt> - specifies the order of the IIR filter (default is 2) </li>
+    <li> <tt>'ripple'</tt> - specifies pass/stop-band ripple for bandpass and bandreject filters (default is 0.5) </li>
+  </ul>
+</p>
+<p>
+  <h2>Algorithm</h2>
+</p>
+<p>
+  <b>Random: </b> this method substitutes the spiky sample by:
+</p>
+<p>
+  <br>
+  <div align="center">
+    <IMG src="images/spike20x.png" width="197" height="15" align="center" border="0"/>
+  </div>
+  <br>
+</p>
+<p>
+  where <IMG src="images/spike44x.png" width="42" height="14" border="0"/> is a random number of mean zero and standard deviation 1.
+</p>
+<p>
+  <b>Mean: </b>this method uses the following equation to replace the spike detected in data.
+</p>
+<br>
+<p>
+  <div align="center">
+    <IMG src="images/spike30x.png" width="158" height="29" align="center" border="0"/>
+  </div>  
+</p>
+<br>
+<p>
+  <b>Previous: </b>the spike is substitued by the previous sample, i.e.:
+</p>
+<br>
+<p>
+  <div align="center">
+    <IMG src="images/spike40x.png" width="90" height="14" align="center" border="0"/>
+  </div>
+</p>
+<br>
+<p>
+  <h2>Examples</h2>
+</p>
+<p>
+  1. Spike cleaning of a sequence of random data with <tt>kspike = 2</tt>.
+</p>
+<p>
+  <div class="fragment"><pre>
+      <br>
+      x = ao(plist( <span class="string">'waveform'</span>, <span class="string">'noise'</span>, <span class="string">'nsecs'</span>,1e4, <span class="string">'fs'</span>,10)); <span class="comment">% create an AO of random data sampled at 1 Hz.</span>
+      pl = plist( <span class="string">'kspike'</span>, 2);                         <span class="comment">% kspike = 2</span>
+      y = spikecleaning(x, pl);                         <span class="comment">% spike cleaning function applied to the input AO, x</span>
+      iplot(x, y)                                       <span class="comment">% plot original and "cleaned" data</span>
+    </pre>
+  </div>
+</p>
+<p>
+  <div align="center">
+    <img src="images/spike1.png" border="1" >
+  </div>
+</p>
+<!--  <p>
+  2. Example of real data: the first image shows data from the real world prior to
+	   the application of the spike cleaning tool. It is clear that some spikes are
+	   present in data and might be convenient to remove them. The second image shows
+	   the same data after the spike samples supression.
+  </p>
+  <p>
+    	<img src="images/stat1x.png" border="1" width="400px">
+  </p>
+    <p>
+    	<img src="images/stat2x.png" border="1" width="400px">
+  </p>
+ -->
+
+