diff m-toolbox/test/LTPDA_training/topic5/TrainigSession_T5_Ex05.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100 (2011-11-23)
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/test/LTPDA_training/topic5/TrainigSession_T5_Ex05.m	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,186 @@
+% Training session Topic 5 exercise 05
+% 
+% Fitting time series with xfit
+%
+% ao/xfit uses a full non-linear least square algorithm to fit data. Here
+% the main features will be described to fit an up-chirp sine.
+%
+%  1) Load time series data
+%  2) Define the model to fit
+%  3) Inspect data in order to find an initial guess
+%  4) Fit data with ao/xfit starting from that guess
+%  5) Check results
+%  6) Fit again by changing the fitting algorithm (fminunc will be used)
+%  7) Check results
+%  8) Fit again by using a Monte Carlo search
+%  9) Check results
+% 10) Final fit with the full model (data bias included)
+% 11) Check results
+% 12) Comments
+% 
+% Trento, 01-03-2010
+% Giuseppe Congedo
+%
+% $Id: TrainigSession_T5_Ex05.m,v 1.3 2011/05/13 15:13:12 ingo Exp $
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+%% 1) load tsdata
+
+% load test noise AO from file
+data = ao(plist('filename', 'topic5/T5_Ex05_TestNoise.xml'));
+data.setName;
+
+% look at data
+iplot(data)
+% iplot(abs(fft(data)))
+% iplot(psd(data))
+
+%% 2) set the model
+
+% try a linearly chirped sine wave with a bias
+mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)');
+mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'});
+mdl.setXvar('t');
+mdl.subs('a',5); % set additional parameters - data bias
+
+%% 3) try to find an initial guess
+
+% plot the tentative model
+mdlTry = mdl.setValues([4 1e-4 1e-5 0]);
+mdlTry.setXvals(data.x);
+iplot(data,mdlTry.eval)
+
+%% 4) xfit from an initial guess
+
+% fit plist
+plfit = plist('Function', mdl, ...   
+  'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters
+  'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters
+  'UB', [5 1e-2 1e-2 2*pi] ... % set upper bounds for parameters
+  );
+  
+% do fit
+params = xfit(data, plfit)
+
+%% 5) check results
+
+bestMdl = eval(params);
+
+% plotting results
+iplot(data,bestMdl)
+iplot(data-bestMdl)
+iplot(psd(data-bestMdl))
+
+% Comments.
+% Fit is not so bad, but let's now try to change the fitting algorithm.
+
+%% 6) xfit from an initial guess (change algorithm)
+
+% fit plist
+plfit = plist('Function', mdl, ...   
+  'P0', [4 1e-4 1e-5 0], ... % set initial guess for the parameters
+  'LB', [2 1e-6 1e-6 0], ... % set lower bounds for parameters
+  'UB', [5 1e-2 1e-2 2*pi], ... % set upper bounds for parameters
+  'algorithm', 'fminunc'); % set fitting algorithm
+  
+% do fit
+params = xfit(data, plfit)
+
+%% 7) check results
+
+bestMdl = eval(params);
+
+% plotting results
+iplot(data,bestMdl)
+iplot(data-bestMdl)
+iplot(psd(data-bestMdl))
+
+% Comments.
+% Fit is not so bad: an improvement with respect to using fminsearch.
+% Let's now try to do a Monte Carlo search.
+
+%% 8) xfit from a Monte Carlo search (bounds are shrinked about the best-fit found above)
+
+% fit plist
+plfit = plist('Function', mdl, ...   
+  'LB', [2.5 1e-5 1e-6 0], ... % set lower bounds for parameters
+  'UB', [3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters
+  'algorithm', 'fminunc', ... % set fitting algorithm
+  'MonteCarlo', 'y', 'Npoints', 1e4); % set the number of points in the parameter space
+  
+% do fit
+params = xfit(data, plfit)
+
+%% 9) check results
+
+bestMdl = eval(params);
+
+% plotting results
+iplot(data,bestMdl)
+iplot(data-bestMdl)
+iplot(psd(data-bestMdl))
+
+% Comments.
+% Fit is not so bad: no further improvements with respect to the previous fit.
+% Let's now try to fit the full model by doing a Monte Carlo search.
+
+%% 10) xfit with full model
+
+% set the full model (including the data bias)
+mdl = smodel('a + P1.*sin(2.*pi.*(P2 + P3.*t).*t + P4)');
+mdl.setParams({'a', 'P1', 'P2', 'P3', 'P4'});
+mdl.setXvar('t');
+
+% fit plist
+plfit = plist('Function', mdl, ...
+  'P0', [5 3.01 7.27e-5 1.00e-5 0.325], ... % set initial guess for the parameters
+  'LB', [4 2.5 1e-5 1e-6 0], ... % set lower bounds for parameters
+  'UB', [6 3.5 1e-3 1e-4 2*pi], ... % set upper bounds for parameters
+  'algorithm', 'fminunc' ... % set fitting algorithm
+  );
+  
+% do fit
+params = xfit(data, plfit)
+
+%% 11) check results
+
+bestMdl = eval(params);
+
+% plotting results
+iplot(data,bestMdl)
+iplot(data-bestMdl)
+iplot(psd(data-bestMdl))
+
+% Comments.
+% Fit is good, even for the full model (including bias).
+
+%% 12) Comments
+
+% Let's compare the fit results with the real parameters.
+%
+% Firstly, data were generated with the set of parameters:
+% a  = 5
+% P1 = 3
+% P2 = 1e-4
+% P3 = 1e-5
+% P4 = 0.3
+%        
+% In the end, the fit results are
+% chi2 = 1.03
+% dof  = 995
+% a   =  4.965      +/-  0.033
+% P1  =  3.018      +/-  0.047
+% P2  =  6.6e-5     +/-  3.1e-5
+% P3  =  1.0032e-5  +/-  3.1e-8
+% P4  =  0.334      +/-  0.043
+% Quite in well accordance with expected values!
+% 
+% Are they biased? No, they are not. Indeed:
+% (p_fit - p_true)/dp = ...
+%                       1.1
+%                       0.39
+%                       1.1
+%                       1.1
+%                       0.80
+% Very good.