diff m-toolbox/test/test_ao_lcohere_variance_montecarlo.m @ 0:f0afece42f48

Import.
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Wed, 23 Nov 2011 19:22:13 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/m-toolbox/test/test_ao_lcohere_variance_montecarlo.m	Wed Nov 23 19:22:13 2011 +0100
@@ -0,0 +1,50 @@
+%  test_ao_ltfe_variance_montecarlo
+%
+% Tests that the standard deviation returned by ao.dy in one
+% frequency bin is equivalent to the matlab's std taking 
+% considering all realisations
+%
+% M Nofrarias 22-07-09
+%
+% $Id: test_ao_lcohere_variance_montecarlo.m,v 1.1 2009/08/11 14:20:11 miquel Exp $
+
+% function test_ao_lcohere_variance_montecarlo()
+ 
+  clear
+
+  % data
+  nsecs = 200;
+  fs    = 10;
+  pl = plist('nsecs', nsecs, 'fs', fs, 'tsfcn', 'sin(2*pi*2*t) + randn(size(t))');
+  
+  
+  % Make a filter
+  f1 = miir(plist('type', 'highpass', 'fc', 4, 'fs', fs));
+  
+  % Window
+  Nfft = 1000;
+  win  = specwin('Hanning', Nfft);
+  pl2 = plist('Kdes',20,'win',win,'Olap',-1)
+  
+  % loop
+  for  i = 1:100
+    a1 = ao(pl);
+    a2 = filter(a1,plist('filter', f1));
+    t1(i) = lcohere(a1,a2,pl2);
+  end
+  
+  %% mean
+  index = 6;
+
+ clear rel
+  for i =1:len(t1(1))
+     mn(i) = [mean(t1(:).y(i))]; % both means are equal
+  rel(:,i) = [std(t1(:).y(i)) mean(t1(:).dy(i))]/abs(mn(i));
+  end
+
+  figure
+loglog(t1(1).x,rel')
+figure
+loglog(t1(1).x,abs(rel(2,:)-rel(1,:)))
+  
+  
\ No newline at end of file