Mercurial > hg > ltpda
diff m-toolbox/test/test_ao_noisegen2D_mdc2.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/test/test_ao_noisegen2D_mdc2.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,240 @@ +% A test script for ao/noisegen2D +% +% DESCRIPTION: Run noisegen2D with mdc2 models and test procedure accuracy +% +% L. Ferraioli 04-02-2009 +% +% $Id: test_ao_noisegen2D_mdc2.m,v 1.3 2009/02/19 17:46:41 luigi Exp $ +% + +%% General use variables and vectors + +f = logspace(-6,log10(5),300); +fs = 10; +Nsecs = 1e5; % number of seconds +Nfft = 1e5; % number of samples for the fft +pls = plist('Nfft', Nfft,'Order',0); % plist for spectra + +%% MDC2 Models + +b = ao(plist('built-in','mdc2r2_fd_ltpnoise','f1',1e-6,'f2',5,'nf',300)); +CSD = [b(1) b(2);conj(b(2)) b(3)]; + +%% Make white noise + +a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs)); +a2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs)); +a1.setYunits('m'); +a2.setYunits('m'); +a = [a1 a2]; + +% axx = a.cpsd(pls); + +%% +iplot(a) + +%% some ploting + +iplot(axx) + +iplot(CSD(1,1),CSD(1,2),CSD(2,1),CSD(2,2)) + +%% Noise generation + +pl = plist(... + 'csd11', CSD(1,1), ... + 'csd12', CSD(1,2), ... + 'csd21', CSD(2,1), ... + 'csd22', CSD(2,2), ... + 'MaxIter', 80, ... + 'PoleType', 2, ... + 'MinOrder', 35, ... + 'MaxOrder', 40, ... + 'Weights', 2, ... + 'Plot', false,... + 'FitTolerance', 2,... + 'RMSEVar', 7,... + 'UseSym', 0,... + 'Disp', false); + +ac = noisegen2D(a, pl); + +%% Checking results and starting data + +% iplot(a) +iplot(ac) + +%% Making cross-spectrum + +acxx = ac.cpsd(pls); +acch = ac.cohere(pls); + +%% Plotting spectra + +% iplot(acxx); + +iplot(abs(acxx(1,1)),abs(CSD(1,1))) % model data need to be multiplied by 2 because acxx is the onesided cpsd +iplot(abs(acxx(1,2)),abs(CSD(1,2))) +iplot(abs(acxx(2,2)),abs(CSD(2,2))) + +iplot(abs(acxx(1,1)),abs(acxx(1,2)),abs(acxx(2,2))) + +%% Plotting coherence + +iplot(acch(2,1),(abs(CSD(1,2)).^2)./(CSD(1,1).*CSD(2,2))) + +%% + +m1=mean(acxx(2,2).data.y(end-10,end)) % calculate average on the tail of channel 2 +m2=mean(CSD(2,2).data.y(end-5,end))% calculate average on the tail of channel 2 +m1/m2 % verify that the ratio is near 1 + +%% +% ************************************************************************ +% Some more analysis for testing the accuracy of noise generation procedure +% ************************************************************************ + +%% Extracting filters from data + +Filt11 = find(ac(1).procinfo,'Filt11'); +Filt12 = find(ac(1).procinfo,'Filt12'); +Filt21 = find(ac(2).procinfo,'Filt21'); +Filt22 = find(ac(2).procinfo,'Filt22'); + +%% Calculating filters responses + +tr11 = resp(Filt11,plist('f',f)); +rFilt11 = tr11(1); +for ii = 2:numel(tr11) + rFilt11 = rFilt11 + tr11(ii); +end +rFilt11.setName('rFilt11', 'internal'); + +tr12 = resp(Filt12,plist('f',f)); +rFilt12 = tr12(1); +for ii = 2:numel(tr12) + rFilt12 = rFilt12 + tr12(ii); +end +rFilt12.setName('rFilt12', 'internal'); + +tr21 = resp(Filt21,plist('f',f)); +rFilt21 = tr21(1); +for ii = 2:numel(tr21) + rFilt21 = rFilt21 + tr21(ii); +end +rFilt21.setName('rFilt21', 'internal'); + +tr22 = resp(Filt22,plist('f',f)); +rFilt22 = tr22(1); +for ii = 2:numel(tr22) + rFilt22 = rFilt22 + tr22(ii); +end +rFilt22.setName('rFilt22', 'internal'); + +%% Obtaining transfer functions + +% calculating transfer functions from data +etf = tfe(a,ac,pls); + +%% Comparing Filters Responses with estimated TFs (e-TFs) + +% Comparing filters responses and calculated TFs +pl = plist('Legends', {'Filter Response','e-TF'}); +iplot(rFilt11,etf(1,3),pl) +iplot(rFilt12,etf(2,3),pl) +iplot(rFilt21,etf(1,4),pl) +iplot(rFilt22,etf(2,4),pl) + +%% Filtering data separately + +% This operation is performed internally to the noisegen2D. Output data are +% then obtained by b1 = b11 + b12 and b2 = b21 + b22 +b11 = filter(a1,plist('filter',Filt11,'bank','parallel')); +b12 = filter(a2,plist('filter',Filt12,'bank','parallel')); +b21 = filter(a1,plist('filter',Filt21,'bank','parallel')); +b22 = filter(a2,plist('filter',Filt22,'bank','parallel')); + +%% Extracting transfer functions from separately filtered data se-TFs + +etf11 = tfe(a1,b11,pls); +etf12 = tfe(a2,b12,pls); +etf21 = tfe(a1,b21,pls); +etf22 = tfe(a2,b22,pls); + +%% Comparing separately-estimated TFs (se-TFs) with filter responses + +pl = plist('Legends', {'Filter Response','se-TF'}); +iplot(rFilt11,etf11(1,2),pl) +iplot(rFilt12,etf12(1,2),pl) +iplot(rFilt21,etf21(1,2),pl) +iplot(rFilt22,etf22(1,2),pl) + +%% Comparing filters with TFs obtained by eigendecomposition + +% This function output transfer functions as they are obtained by the +% eigendecomposition process. i.e. before the fitting process + +icsd11 = CSD(1,1).data.y*fs/2; +icsd12 = CSD(1,2).data.y*fs/2; +icsd21 = CSD(2,1).data.y*fs/2; +icsd22 = CSD(2,2).data.y*fs/2; + +[tf11,tf12,tf21,tf22] = utils.math.eigcsd(icsd11,icsd12,icsd21,icsd22,'USESYM',0,'DIG',50,'OTP','TF'); + +% Making AOs +eigtf11 = ao(fsdata(f,tf11,fs)); +eigtf12 = ao(fsdata(f,tf12,fs)); +eigtf21 = ao(fsdata(f,tf21,fs)); +eigtf22 = ao(fsdata(f,tf22,fs)); + +%% Comparing eig-TFs with output filters + +% Compare TFs before and after the fitting process + +pl = plist('Legends', {'eig-TF','Filter Response'}); +iplot(eigtf11,rFilt11,pl) +iplot(eigtf12,rFilt12,pl) +iplot(eigtf21,rFilt21,pl) +iplot(eigtf22,rFilt22,pl) + +%% Phase difference between eig-TFs and output filters + +% checking that phase differences between TFs are preserved by the fitting +% process +eigph1 = unwrap(angle(eigtf11)-angle(eigtf21)); +eigph1.setYunits('rad') +filtph1 = unwrap(angle(rFilt11)-angle(rFilt21)); +filtph1.setYunits('rad') +eigph2 = unwrap(angle(eigtf22)-angle(eigtf12)); +eigph2.setYunits('rad') +filtph2 = unwrap(angle(rFilt22)-angle(rFilt12)); +filtph2.setYunits('rad') + +pl = plist('Legends',{'eig-TF','Filter'},'YScales',{'All','lin'}); +iplot(eigph1+2*pi,filtph1,pl) +iplot(eigph2,filtph2,pl) + + +%% Comparing eig-TFs with se-TFs + +% Compare eigendecomposition results with separately estimated TFs (se-TFs) +pl = plist('Legends', {'eig-TF','se-TF'}); +iplot(eigtf11,etf11(1,2),pl) +iplot(eigtf12,etf12(1,2),pl) +iplot(eigtf21,etf21(1,2),pl) +iplot(eigtf22,etf22(1,2),pl) + +%% Phase difference between eig-TFs and se-TFs + +% checking that phase differences between TFs are preserved by the fitting +% process also for the filtered data (se-TFs) +eigph1 = unwrap(angle(eigtf11)-angle(eigtf21)); +filtph1 = unwrap(angle(etf11(1,2))-angle(etf21(1,2))); +eigph2 = unwrap(angle(eigtf22)-angle(eigtf12)); +filtph2 = unwrap(angle(etf22(1,2))-angle(etf12(1,2))); + +pl = plist('Legends',{'eig-TF \Delta\phi','se-TF \Delta\phi'},'YScales',{'All','lin'}); +iplot(eigph1,filtph1,pl) +iplot(eigph2,filtph2,pl) + +% END \ No newline at end of file