Mercurial > hg > ltpda
diff m-toolbox/test/utils/test_2dim_vcfit.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/test/utils/test_2dim_vcfit.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,153 @@ +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% TEST Fitting procedure in 2dim z-domain VDFIT +% At the end you have 4 stable transfer functions in partial fractions +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% HISTORY: 02-10-2008 L Ferraioli +% Creation +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +%% VERSION + +'$Id: test_2dim_vcfit.m,v 1.1 2009/04/23 10:11:26 luigi Exp $'; + +%% Clear + +clear all + +%% Loading spectra + +load ..\m-toolbox\test\mpsd.mat % load mpsd.mat first column is f then psd1, csd and psd2 + +f = mpsd(:,1); +psd1 = mpsd(:,2); +csd = mpsd(:,3); +psd2 = mpsd(:,4); +fs = 10; + + +%% Eigendecomposition + +[tf11,tf12,tf21,tf22] = utils.math.eigcsd(psd1,csd,conj(csd),psd2); + +%% Constructing vector + +f1 = [tf11 tf21]; +f2 = [tf12 tf22]; + +%% VCFIT + +N = 26; %Order of approximation + + +% Max Iteration +Nmaxiter = 70; + +% Fitting params +fitin.stable = 0; +fitin.dterm = 0; +fitin.plot = 0; + +weight = utils.math.wfun(f1,2); +% weight = 1./abs(f1); + +pparams = struct('spolesopt',2, 'type','CONT', 'pamp', 0.01); +poles1 = utils.math.startpoles(N,f,pparams); +for hh = 1:Nmaxiter + [res1,poles1,dterm1,mresp1,rdl1,mse1] = utils.math.vcfit(f1,f,poles1,weight,fitin); % Fitting +% disp(['Iter' num2str(hh)]) + + % Stop condition checking + order = length(poles1); + mlr1(hh) = mse1(:,1); + mlr2(hh) = mse1(:,2); +% [ext1,msg1] = stopfit(f1(:,1),rdl1(:,1),mlr1,order,'mlsrvar',2,0.0001,2); +% [ext2,msg2] = stopfit(f1(:,2),rdl1(:,2),mlr2,order,'mlsrvar',2,0.0001,2); +% +% if ext1 && ext2 +% disp(msg1) +% break +% end + +end + +% plotting squared error +figure() +semilogy(mlr1,'-ok') +hold on +grid on +semilogy(mlr2,'-or') + +% % plotting RMS error variation +% figure() +% semilogy(abs(diff(sqrt(mlr1))),'-ok') +% hold on +% grid on +% semilogy(abs(diff(sqrt(mlr2))),'-or') + +% plotting squared error variation +figure() +semilogy(abs(diff(mlr1)./mlr1(1,end-1)),'-ok') +hold on +grid on +semilogy(abs(diff(mlr2)./mlr2(1,end-1)),'-or') + +%% All Passing + +[np1,resp1] = pfallps(res1,poles1,dterm1,mresp1,f); + + +figure() +subplot(2,1,1); +p1 = loglog(f,abs(mresp1),'k'); +hold on +p2 = loglog(f,abs(resp1),'r'); +xlabel('Frequency [Hz]') +ylabel('Amplitude') +legend([p1(1) p2(1)],'VDFIT','Stabilized') +hold off + +subplot(2,1,2); +p4 = semilogx(f,(180/pi).*unwrap(angle(mresp1)),'k'); +hold on +p5 = semilogx(f,(180/pi).*unwrap(angle(resp1)),'r'); +xlabel('Frequency [Hz]') +ylabel('Phase [Deg]') +legend([p4(1) p5(1)],'VDFIT', 'Stabilized') +hold off + +%% VCFIT + +N = 14; %Order of approximation + + +% Max Iteration +Nmaxiter = 50; + +% Fitting params +fitin.stable = 0; +fitin.dterm = 0; +fitin.plot = 1; + +weight = wfun(f2,1); + +pparams = struct('spolesopt',1, 'type','CONT', 'pamp', 0.01); +poles2 = startpoles(N,f,pparams); + +for hh = 1:Nmaxiter + [res2,poles2,dterm2,mresp2,rdl2] = vcfit(f2,f,poles2,weight,fitin); % Fitting + disp(['Iter' num2str(hh)]) + + % Stop condition checking + order = length(poles1); + mlr1(hh) = mean(log10(abs(f2(:,1)))-log10(abs(rdl2(:,1)))); + mlr2(hh) = mean(log10(abs(f2(:,2)))-log10(abs(rdl2(:,2)))); + [ext1,msg1] = stopfit(f2(:,1),rdl2(:,1),mlr1,order,'mlrsvar',2,0.0001,2); + [ext2,msg2] = stopfit(f2(:,2),rdl2(:,2),mlr2,order,'mlrsvar',2,0.0001,2); + + if ext1 && ext2 + disp(msg1) + break + end + +end +