Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/mhsample.m @ 28:01b86b780ba7 database-connection-manager
Remove LTPDARepositoryManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Metropolis algorithm % % M Nofrarias 15-06-09 % % $Id: mhsample.m,v 1.19 2011/11/16 08:52:50 nikos Exp $ % prior %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [smpl smplr] = mhsample(model,in,out,nse,cov,number,limit,param,Tc,xi,xo,search,jumps,parplot,dbg_info,inNames,outNames,fpars,anneal,SNR0,DeltaL,inModel,outModel) import utils.const.* % compute mean and range mn = mean(limit); range = diff(limit); % initialize acc = []; nacc = 1; nrej = 1; loop = 0; oldacc = 0; oldrej = 0; chgsc = 0; nparam = length(param); delta = 1; SNR = 0; heat = xi; % plist to pass in to the sampler for use in bode spl = plist('outputs', outNames, ... 'inputs', inNames, ... 'reorganize', false,... 'numeric output',true); % check if using priors nparams = size(xo); if isempty(fpars) fpars = zeros(nparams(2),3); end % switch depending on model class (initial likelihood) switch class(model) case 'matrix' [loglk1 SNR] = utils.math.loglikelihood_matrix(xo,in,out,nse,model,param,inModel,outModel); case 'smodel' loglk1 = utils.math.loglikelihood(xo,in,out,nse,model,param); case 'ssm' Amats = model.amats; Bmats = model.bmats; Cmats = model.cmats; Dmats = model.dmats; loglk1 = utils.math.loglikelihood_ssm(xo,in,out,nse,model,param,inNames,outNames, spl, Amats, Bmats, Cmats, Dmats); otherwise error('### Model must be either from the ''smodel'' or the ''ssm'' class. Please check the inputs') end % accept the first sample if no search active if ~search smpl(1,:) = xo; nacc = 1; else smpl = []; nacc = 0; end nrej = 0; utils.helper.msg(msg.IMPORTANT, 'Starting Monte Carlo sampling', mfilename('class'), mfilename); % compute prior for the initial sample of the chain logprior1 = logPriors(xo,fpars); % if initial guess is far away, this contidion sets our logprior % to zero and takes account only the loglikelihood for the % computation of logratio. From this initial point it starts % searching for the small area of acceptance. if logprior1 == -Inf; logprior1 = 0; end T = Tc(1); hjump = 0; % main loop while(nacc<number) % jumping criterion during search phase % - 2-sigma by default % - 10-sigma jumps at mod(10) samples % - 100-sigma jumps at mod(25) samples % - 1000-sigma jumps at mod(100) samples if search if nacc <= Tc(1) if(mod(nacc,10) == 0 && mod(nacc,25) ~= 0 && mod(nacc,100) ~= 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(2)^2*cov); elseif(mod(nacc,20) == 0 && mod(nacc,100) ~= 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(3)^2*cov); elseif(mod(nacc,50) == 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(4)^2*cov); % xn = xo + range/2+rand(size(xo)); else hjump = 0; xn = mvnrnd(xo,jumps(1)^2*cov); end else xn = mvnrnd(xo,cov); % changed that too end else xn = mvnrnd(xo,cov); end % compute prior probability logprior2 = logPriors(xn,fpars); %check if out of limits if( any(xn < limit(1,:)) || any(xn > limit(2,:))) logprior2 = inf; loglk2 = inf; betta = inf; %heat = inf; % This condition save us computation time. elseif logprior2 == -Inf loglk2 = inf; betta = inf; else % switch depending on model class (new likelihood) switch class(model) case 'matrix' [loglk2 SNR] = utils.math.loglikelihood_matrix(xn,in,out,nse,model,param,inModel,outModel); case 'smodel' loglk2 = utils.math.loglikelihood(xn,in,out,nse,model,param); case 'ssm' [loglk2 SNR] = utils.math.loglikelihood_ssm(xn,in,out,nse,model,param,inNames,outNames, spl, Amats, Bmats, Cmats, Dmats); otherwise error('### Model must be either from the ''smodel'' or the ''ssm'' class. Please check the inputs') end % compute annealing if ~isempty(Tc) if nacc <= Tc(1) % compute heat factor switch anneal case 'simul' delta = 1; case 'thermo' if (0 <= SNR(1) && SNR(1) <= SNR0) delta = 1; elseif (SNR(1) > SNR0) delta = (SNR(1)/SNR0)^2; end case 'simple' if (nacc > 10 && mod(nacc,10) == 0) deltalogp = std(smpl(nacc-10:nacc,1)); if deltalogp <= DeltaL(1) T = T + DeltaL(3); elseif deltalogp >= DeltaL(2) T = T - DeltaL(4); end delta = Tc(1)/T; end heat = xi*delta; end betta = 1/2 * 10^(-heat*(1-Tc(1)/Tc(2))); elseif Tc(1) < nacc && nacc <= Tc(2) betta = 1/2 * 10^(-heat*(1-nacc/Tc(2))); else betta = 1/2; end else betta = 1/2; end end % here we are % likelihood ratio logr = betta*(logprior2 + loglk2 - loglk1 - logprior1) ; % decide if sample is accepted or not if logr < 0 xo = xn; nacc = nacc+1; sumsamples = nacc + nrej; smpl(nacc,1) = loglk2; smpl(nacc,2:size(xn,2)+1) = xn; smplr(sumsamples,1:size(xn,2)) = xn; smplr(sumsamples,size(xn,2)+1) = 1; smplr(sumsamples,size(xn,2)+2) = loglk2; loglk1 =loglk2; logprior1=logprior2; if dbg_info %utils.helper.msg(msg.IMPORTANT, sprintf('acc.\t loglik: %d -> %d priors: %d -> %d betta: %d ratio: %d',loglk1,loglk2,logprior1,logprior2,betta,logr), mfilename('class'), mfilename); utils.helper.msg(msg.IMPORTANT, sprintf('acccount: %d SNR: %d %d Heat: %d',nacc,SNR(1),SNR(2),heat)); end elseif rand(1) > (1 - exp(-logr)) xo = xn; nacc = nacc+1; sumsamples = nacc + nrej; smpl(nacc,1) = loglk2; smpl(nacc,2:size(xn,2)+1) = xn; smplr(sumsamples,1:size(xn,2)) = xn; smplr(sumsamples,size(xn,2)+1) = 1; smplr(sumsamples,size(xn,2)+2) = loglk2; loglk1 =loglk2; logprior1=logprior2; if dbg_info %utils.helper.msg(msg.IMPORTANT, sprintf('acc.\t loglik: %d -> %d priors: %d -> %d betta: %d ratio: %d',loglk1,loglk2,logprior1,logprior2,betta,logr), mfilename('class'), mfilename); utils.helper.msg(msg.IMPORTANT, sprintf('acccount: %d SNR: %d %d Heat: %d',nacc,SNR(1),SNR(2),heat)); end else nrej = nrej+1; sumsamples = nacc + nrej; smplr(sumsamples,1:size(xn,2)) = xn; smplr(sumsamples,size(xn,2)+1) = 0; smplr(sumsamples,size(xn,2)+2) = loglk2; if dbg_info %utils.helper.msg(msg.IMPORTANT, sprintf('rej.\t loglik: %d -> %d priors: %d -> %d betta: %d ratio: %d',loglk1,loglk2,logprior1,logprior2,betta,logr), mfilename('class'), mfilename); utils.helper.msg(msg.IMPORTANT, sprintf('rejcount: %d SNR: %d %d Heat: %d',nrej,SNR(1),SNR(2),heat)); end end % display and save if(mod(nacc,100) == 0 && nacc ~= oldacc) updacc = nacc-oldacc; updrej = nrej-oldrej; ratio(nacc/10,:) = updacc/(updacc+updrej); utils.helper.msg(msg.IMPORTANT, sprintf('accepted: %d rejected : %d acc. rate: %4.2f',nacc,updrej,ratio(end)), mfilename('class'), mfilename); for i = 1:numel(param) fprintf('### Parameters: %s = %d \n',param{i},xn(i)) end oldacc = nacc; oldrej = nrej; save('chain.txt','smpl','-ASCII') save('acceptance.txt','ratio','-ASCII') end % plot if ((mod(sumsamples,100) == 0) && (nacc ~= 0) && ~isempty(parplot)) for i = 1:numel(parplot) figure(parplot(i)) plot(smpl(:,parplot(i))) end figure(i+1) plot(smplr(:,2)) end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute logpriors %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function logprior = logPriors(parVect,fitparams) D = size(parVect); for ii=1:D(2) prior(ii) = normpdf(parVect(ii),fitparams(ii,1),fitparams(ii,2))/fitparams(ii,3); % checking if priors are used for this run if isnan(prior(ii)) prior(ii) = 1; end end prior = log(prior); logprior = sum(prior); % assuming that priors are independent, then % p(x|8n)=p(x|81)p(x|82)p(x|83)...p(x|8n)=p1xp2xp3...xpn % and log(p(x|8n)) = logp1+logp2+...+logpn end