Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/ndeigcsd.m @ 28:01b86b780ba7 database-connection-manager
Remove LTPDARepositoryManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% NDEIGCSD calculates TFs from ND cross-correlated spectra. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: % % Calculates TFs or WFs from Ndim cross correlated spectra. Input % elemnts of a cross-spectral matrix in 2D are assumed to be: % % / csd11(f) csd12(f) \ % CSD(f) = | | % \ csd21(f) csd22(f) / % % % CALL: h = eigcsd(csd,varargin) % % INPUT: % % csd are the elements of the cross spectra matrix. It is a (n,n,m) % matrix where n is the dimensionality of the system and m is the % number of frequency samples % % Input also the parameters specifying calculation options % % 'OTP' define the output type. Allowed values are 'TF' output the % transfer functions or 'WF' output the whitening filters frequency % responses. Default 'TF' % 'MTD' define the method for the calculation of the csd matrix of a % multichannel system. Admitted values are 'PAP' referring to Papoulis % [1] style calculation in which csd = TF*I*TF' and 'KAY' referring to % Kay [2] style calculation in which csd = conj(TF)*I*TF.'. % Default 'PAP' % % OUTPUT: % % h are the TFs or WFs frequency responses. It is a (n,n,m) matrix in % which n is the dimensionality of the system and m is the number of % frequency samples. % % REFERENCES: % % [1] A. Papoulis, Probability Random Variable and Stochastic Processes, % McGraw-Hill, third edition, 1991. % [2] S. M. Kay, Modern Spectral Estimation, Prentice Hall, 1988. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % HISTORY: 23-04-2009 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % VERSION: $Id: ndeigcsd.m,v 1.4 2009/11/06 16:55:51 luigi Exp $ % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = ndeigcsd(csd,varargin) [l,m,npts] = size(csd); if m~=l error('!!! The first two dimensions of csd must be equal. csd must be a square matrix frequency by frequency.') end % Finding parameters % default otp = 'TF'; mtd = 'PAP'; if ~isempty(varargin) for j=1:length(varargin) if strcmp(varargin{j},'OTP') otp = upper(varargin{j+1}); end if strcmp(varargin{j},'MTD') mtd = upper(varargin{j+1}); end end end % Finding suppression suppr = ones(l,l); for ii = 2:l k = ones(l,1); for jj = ii-1:-1:1 k(jj) = min(sqrt(csd(jj,jj,:)./csd(ii,ii,:))); if k(jj)>=1 suppr(jj,ii) = floor(k(jj)); else n=0; while k(jj)<1 k(jj)=k(jj)*10; n=n+1; end k(jj) = floor(k(jj)); suppr(jj,ii) = k(jj)*10^(-n); end end % csuppr(ii) = prod(suppr(:,ii)); end csuppr = prod(suppr,2); supmat = diag(csuppr); ssup = supmat*supmat.'; supmat = rot90(rot90(supmat)); isupmat = inv(supmat); % Core Calculation % initializing output dat h = ones(l,m,npts); for phi = 1:npts % Appliing suppression PP = csd(:,:,phi); PP = supmat*PP*supmat; % [V,D] = eig(PP,ssup); [V,D,U] = svd(PP,0); % [V,D] = eig(PP); % Correcting the output of eig % V = fliplr(V); % D = rot90(rot90(D)); % % Correcting the output of eig % Vp = fliplr(V); % Lp = rot90(rot90(D)); % % % Correcting the phase % [a,b] = size(PP); % for ii=1:b % Vp(:,ii) = Vp(:,ii).*(cos(angle(Vp(ii,ii)))-1i*sin(angle(Vp(ii,ii)))); % Vp(ii,ii) = real(Vp(ii,ii)); % end % % V = Vp; % D = Lp; % Definition of the transfer functions switch otp case 'TF' switch mtd case 'PAP' % HH = ssup*V*sqrt(D); HH = isupmat*V*sqrt(D); % HH = V*sqrt(D); case 'KAY' % HH = conj(ssup*V*sqrt(D)); HH = conj(isupmat*V*sqrt(D)); % HH = conj(V*sqrt(D)); end case 'WF' switch mtd case 'PAP' %HH = inv(ssup*V*sqrt(D)); HH = inv(isupmat*V*sqrt(D)); case 'KAY' %HH = inv(conj(ssup*V*sqrt(D))); HH = inv(conj(isupmat*V*sqrt(D))); end end h(:,:,phi) = HH; end end