Remove LTPDARepositoryManager implementation. Java code
line source
+ − % cpsdForCorrelatedInputs computes the output theoretical CPSD shape with given inputs.
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: cpsdForCorrelatedInputs computes the output theoretical CPSD
+ − % or PSD shape with given inputs.
+ − % It returns summed and contributions only and takes
+ − % input arrays of objects (instead of vectors)
+ − %
+ − % CALL: [mat_out] = CPSD(sys, pl)
+ − %
+ − % INPUTS:
+ − % - sys, (array of) ssm object
+ − %
+ − % OUTPUTS:
+ − % _ mat_out contains specified returned aos
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'cpsdForCorrelatedInputs')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: cpsdForCorrelatedInputs.m,v 1.2 2011/05/23 14:18:20 adrien Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = cpsdForCorrelatedInputs(varargin)
+ −
+ − %% starting initial checks
+ −
+ − % use the caller is method flag
+ − callerIsMethod = utils.helper.callerIsMethod;
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all SSMs and plists
+ − [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names);
+ − [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist');
+ − if ~isempty(rest)
+ − pl = combine(pl, plist(rest{:}));
+ − end
+ − pl = combine(pl, getDefaultPlist());
+ −
+ − %%% Internal call: Only one object + don't look for a plist
+ − internal = strcmp(varargin{end}, 'internal');
+ −
+ − %% begin function body
+ −
+ − %% retrieve system infos
+ −
+ − if numel(sys)~=1
+ − error('noisespectrum needs exactly one ssm as an input')
+ − end
+ − if ~sys.isnumerical
+ − error(['error because system ',sys.name,' is not numerical']);
+ − end
+ − if ~sys.isStable
+ − error('input ssm is not stable!')
+ − end
+ − if sys.timestep==0
+ − timestep = 1;
+ − else
+ − timestep = sys.timestep;
+ − end
+ − if ~internal
+ − inhist = sys.hist;
+ − end
+ −
+ − %% modifying system's ordering
+ − if find(pl, 'reorganize')
+ − sys = reorganize(sys, pl, 'set', 'for cpsdForCorrelatedInputs', 'internal', 'internal');
+ − end
+ −
+ − %% collecting functions i/o data
+ − aos_in = find(pl, 'aos');
+ − PZ_in = find(pl, 'PZmodels');
+ − cov_in = find(pl, 'covariance');
+ − cpsd_in = find(pl, 'CPSD');
+ − noise_in = blkdiag(cov_in, cpsd_in/(timestep*2));
+ − powWhiteNoise = noise_in;
+ − [U1,S1,V1] = svd(noise_in.'); % testing hermitian symmetry and definite positiveness
+ − if (sum(S1<0)>0)
+ − error('covariance/cpsd matrix is not positive')
+ − elseif norm(U1-V1')>1e-15*sqrt(numel(U1))
+ − error('covariance/cpsd matrix is not hermitian symmetric')
+ − end
+ −
+ − %% getting system's i/o sizes
+ − inputSizes = sys.inputsizes;
+ − outputSizes = sys.outputsizes; %#ok<NASGU>
+ −
+ − Naos_in = inputSizes(1);
+ − NPZmodels = inputSizes(3);
+ −
+ − %% retrieving frequency vector
+ − if isempty(Naos_in)==0
+ − f1 = find(pl,'f1');
+ − f2 = find(pl,'f2');
+ − NFreqs = find(pl,'nf');
+ − if isempty(f1) || isempty(f2)|| isempty(NFreqs)
+ − error('### Please specify frequency vector a start and stop frequency .');
+ − else
+ − freqs = 10.^linspace(log10(f1), log10(f2), NFreqs);
+ − end
+ − else
+ − freqs = aos_in(1).x;
+ − end
+ −
+ − %% checking frequency vector
+ − for i=2:numel(aos_in)
+ − if ~isequal(freqs,aos_in(i).x)
+ − error('there exist different frequency vectors');
+ − end
+ − end
+ −
+ − %% reshape pzmodels and aos for input cross-spectra
+ − if size(PZ_in,1)==NPZmodels
+ − PZdata = zeros(Npzmodels,Npzmodels,NFreqs);
+ − for i=1:NPZmodels
+ − for j=1:Npzmodels
+ − a = resp(PZ_in(i,j), freqs);
+ − PZdata(i,j,:) = reshape(a.y,[1,NFreqs]) ;
+ − end
+ − end
+ − else
+ − error('Wrong size for field PZ_in')
+ − end
+ −
+ − if size(aos_in,1)==Naos_in && size(aos_in,2)==Naos_in
+ − AOdata = zeros(Naos_in,Naos_in,NFreqs);
+ − for i=1:Naos_in
+ − for j=1:Naos_in
+ − AOdata(i,j,:) = reshape(aos_in(i,j).y,[1,NFreqs]) ;
+ − end
+ − end
+ − else
+ − error('Wrong size for field aos_in')
+ − end
+ −
+ − %% SSM Transfer function
+ − [a, b, c, d, Ts, InputName, StateName, OutputName,...
+ − inputvarunits, ssvarunits, outputvarunits] = double(sys); %#ok<ASGLU>
+ − resps = ssm.doBode(a, b, c, d, 2*pi*freqs, Ts);
+ − Noutputs = numel(OutputName);
+ −
+ − %% power for each frequency with SVD computation
+ − diagOnly = pl.find('DIAGONAL ONLY');
+ − if diagOnly
+ − Result = zeros(Noutputs,NFreqs);
+ − else
+ − Result = zeros(Noutputs,Noutputs,NFreqs);
+ − end
+ −
+ − for i_freq=1:NFreqs
+ − %% contribution from aos, testing positiveness
+ − powAO = squeeze(AOdata(:,:,i_freq));
+ − [U1,S1,V1] = svd(powAO.'); % testing hermitian symmetry and definite positiveness
+ − if (sum(S1<0)>0)
+ − error('AO covariance matrix is not positive')
+ − elseif norm(U1-V1')>1e-15*sqrt(numel(U1))
+ − error('AO covariance matrix is not hermitian symmetric')
+ − end
+ − %% contribution from PZmodels, testing positiveness
+ − tfPZ = squeeze(PZdata(:,:,i_freq));
+ − powPZ = tfPZ * tfPZ';
+ − %% summing all three contributions sources, computing CPSD
+ − pow = blkdiag(powAO, powWhiteNoise, powPZ);
+ − RespLoc = squeeze(resps(:,:,i_freq));
+ − noise = RespLoc * pow * RespLoc' * (2*timestep) ;
+ − if diagOnly
+ − Result(:,i_freq) = real(diag(noise)) ;
+ − else
+ − Result(:,:,i_freq) = noise ;
+ − end
+ − end
+ −
+ − %% saving in aos
+ − if diagOnly % making a psd only
+ − ao_out = ao.initObjectWithSize(Noutputs, 1);
+ − for io=1:Noutputs
+ − ao_out(io).setData(fsdata(freqs, squeeze(Result(io,:)) ));
+ − ao_out(io).setName( ['PSD of ' , OutputName{io}]);
+ − ao_out(io).setXunits('Hz');
+ − ao_out(io).setYunits(outputvarunits(io)*outputvarunits(io)/unit('Hz'));
+ − ao_out(io).setDescription( ['PSD of ' , OutputName{io}]);
+ − end
+ − else % making a cpsd matrix
+ − ao_out = ao.initObjectWithSize(Noutputs, Noutputs);
+ − for io=1:Noutputs
+ − for jo=1:Noutputs
+ − ao_out(io,jo).setData(fsdata(freqs, squeeze(Result(jo,io,:)) ));
+ − ao_out(io,jo).setXunits('Hz');
+ − ao_out(io,jo).setYunits(outputvarunits(io)*outputvarunits(jo)/unit('Hz'));
+ − if io~=jo
+ − ao_out(io,jo).setName( ['Cross PSD of ', OutputName{jo}, ' and ', OutputName{io}]);
+ − ao_out(io,jo).setDescription( ['Cross PSD of ', OutputName{jo}, ' and ', OutputName{io}]);
+ − else
+ − ao_out(io,jo).setName( ['PSD of ' , OutputName{jo}]);
+ − ao_out(io,jo).setDescription( ['PSD of ' , OutputName{jo}]);
+ − end
+ − end
+ − end
+ − end
+ −
+ − %% construct output matrix object
+ − out = matrix(ao_out);
+ − if callerIsMethod
+ − % do nothing
+ − else
+ − myinfo = getInfo('None');
+ − out.addHistory(myinfo, pl , ssm_invars(1), inhist );
+ − end
+ −
+ − %% Set output depending on nargout
+ − if nargout == 1;
+ − varargout = {out};
+ − elseif nargout == 0;
+ − iplot(ao_out);
+ − else
+ − error('Wrong number of outputs')
+ − end
+ − end
+ −
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ −
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: cpsdForCorrelatedInputs.m,v 1.2 2011/05/23 14:18:20 adrien Exp $', sets, pl);
+ −
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function pl = getDefaultPlist()
+ − pl = ssm.getInfo('reorganize', 'for cpsdForCorrelatedInputs').plists;
+ − pl.remove('set');
+ −
+ − p = param({'covariance', 'The covariance matrix of this noise between input ports for the <i>time-discrete</i> noise model.'}, []);
+ − pl.append(p);
+ −
+ − p = param({'CPSD', 'The one sided cpsd matrix of the white noise between input ports.'}, []);
+ − pl.append(p);
+ −
+ − p = param({'aos', 'An array of input AOs, provides the cpsd of the input noise.'}, ao.initObjectWithSize(1,0));
+ − pl.append(p);
+ −
+ − p = param({'PZmodels', 'An array of input pzmodels, used to filter the input noise.'}, paramValue.DOUBLE_VALUE(zeros(0,1)));
+ − pl.append(p);
+ −
+ − p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − p = param({'f2', 'The maximum frequency. Default is Nyquist or 1Hz.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = param({'f1', 'The minimum frequency. Default is f2*1e-5.'}, paramValue.EMPTY_DOUBLE);
+ − pl.append(p);
+ −
+ − p = param({'nf', 'The number of frequency bins. Frequencies are scale logarithmically'}, paramValue.DOUBLE_VALUE(200));
+ − pl.append(p);
+ −
+ − p = param({'diagonal only', 'Set to true if you want the PSD instead of the CPSD'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − end
+ −