Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/franklin_ng_content.html @ 28:01b86b780ba7 database-connection-manager
Remove LTPDARepositoryManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
The following sections gives an introduction to the <a href="noisegen.html">generation of model noise</a> using the noise generator implemented in LTPDA. <ul> <li><a href="#franklin">Franklin's noise generator</a></li> <li><a href="#description">Description</a></li> <li><a href="#inputs">Inputs</a></li> <li><a href="#outputs">Outputs</a></li> <li><a href="#usage">Usage</a></li> </ul> <h2><a name="franklin">Franklin's noise generator</a></h2> Franklin's noise generator is a method to generate arbitrarily long time series with a prescribed spectral density. The algorithm is based on the following paper: </p> <p>Franklin, Joel N.: <i> Numerical simulation of stationary and non-stationary gaussian random processes </i>, SIAM review, Volume {<b> 7</b>}, Issue 1, page 68--80, 1965. </p> <p> The Document <i> Generation of Random time series with prescribed spectra </i> by Gerhard Heinzel (S2-AEI-TN-3034) <br> corrects a mistake in the aforesaid paper and describes the practical implementation. </p> <p> See <a href="noisegen.html">Generating model noise</a> for more general information on this. </p> <p> Franklin's method does not require any 'warm up' period. It starts with a transfer function given as ratio of two polynomials.<br/> The generator operates on a real state vector y of length n which is maintained between invocations. It produces samples of the time series in equidistant steps <tt>T = 1/fs</tt>, where <tt>fs</tt> is the sampling frequency. </p> <p> <ul> <li> y0 = Tinit * r, on initialization <li> yi = E * yi-1 + Tprop * r, to propagate <li> xi = a * yi , the sampled time series. </ul> r is a vector of independent normal Gaussian random numbers Tinit, E, Tprop which are real matrices and a which is a real vector are determined once by the algorithm. </p> <h2><a name="description">Description</a></h2> <p> When an analysis object is constructed from a pole zero model Franklin's noise generator is called (compare <a href="ao_create.html#pzmodel">Creating AOs from pole zero models</a>). </p> <h2><a name="inputs">Inputs</a></h2> for the function call the parameter list has to contain at least: <ul> <li> nsecs - number of seconds (length of time series) <li> fs - sampling frequency <li> pzmodel with gain </ul> <h2><a name="outputs">Outputs</a></h2> <ul> <li> b - analysis object containing the resulting time series </ul> </p> <h2><a name="usage">Usage</a></h2> The analysis object constructor <a href="ao_create.html">ao</a> calls the following four functions when the input is a pzmodel. <ul> <li> ngconv <li> ngsetup <li> nginit <li> ngprop </ul> <p> First a parameter list of the input parameters is to be done. For further information on this look at <a href="plist_create.html#params">Creating parameter lists from parameters</a>.<br/> </p> <h2><a name="starting">Starting from a given pole/zero model</a></h2> <p> The parameter list should contain the number of seconds the resulting time series should have <tt>nsecs</tt> and the sampling frequency <tt>fs</tt>. <br/> The constructor call should look like this: </p> <div class="fragment"><pre> f1 = 5; f2 = 10; f3 = 1; gain = 1; fs = 10; <span class="comment">% sampling frequency</span> nsecs = 100; <span class="comment">% number of seconds to be generated</span> p = [pz(f1) pz(f2)]; z = [pz(f3)]; pzm = pzmodel(gain, p, z); a = ao(pzm, plist(<span class="string">'nsecs'</span>, nsecs, <span class="string">'fs'</span>,fs)) </pre></div> The output will be an analysis object <tt>a</tt> containing the time series with the spectrum described by the input pole-zero model. </p>