Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/ltpda_training_topic_2_9.html @ 28:01b86b780ba7 database-connection-manager
Remove LTPDARepositoryManager implementation. Java code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> <html lang="en"> <head> <meta name="generator" content= "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> <meta http-equiv="Content-Type" content= "text/html; charset=us-ascii"> <title>IFO/Temperature Example - Pre-processing (LTPDA Toolbox)</title> <link rel="stylesheet" href="docstyle.css" type="text/css"> <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> <meta name="description" content= "Presents an overview of the features, system requirements, and starting the toolbox."> </head> <body> <a name="top_of_page" id="top_of_page"></a> <p style="font-size:1px;"> </p> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr> <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> <td valign="baseline" align="right"><a href= "ltpda_training_topic_2_8.html"><img src="b_prev.gif" border="0" align= "bottom" alt="Split and join AOs"></a> <a href= "ltpda_training_topic_3.html"><img src="b_next.gif" border="0" align= "bottom" alt="Topic 3 - Spectral Analysis"></a></td> </tr> </table> <h1 class="title"><a name="f3-12899" id="f3-12899"></a>IFO/Temperature Example - Pre-processing</h1> <hr> <p> <p> Now we return to the IFO/Temperature example that was started in Topic 1. </p> <h2>Loading and checking the calibrated data sets from topic2</h2> <p> In the last topic you should have saved your calibrated data files as<br> <tt>ifo_temp_example/ifo_disp.xml</tt> and <br> <tt>ifo_temp_example/temp_kelvin.xml</tt> </p> <p> Now load each file into an AO, and simplify the name of the objects by assigning them the name of the Matlab workspace variable containing them:<br> </p> <div class="fragment"><pre> ifo = ao(<span class="string">'ifo_temp_example/ifo_disp.xml'</span>); temp = ao(<span class="string">'ifo_temp_example/temp_kelvin.xml'</span>); ifo.setName; temp.setName; </pre></div> <p> Let's see what kind of pre-processing we have to apply to our data prior to further analysis. </p> <p> You can have a look at the data by for example displaying the AOs on the terminal and by plotting them, of course. Since the two data series have different Y units, we should plot them on subplots. To do that with <tt>iplot</tt>, pass the key 'arrangement' in a plist. For example: </p> <div class="fragment"><pre> pl = plist(<span class="string">'arrangement'</span>, <span class="string">'subplots'</span>); </pre></div> <p> If you plot the two time-series you should see something like the following:<br> <img src="images/ltpda_training_1/topic2/ifotempraw.png" alt="ifotempdata" border="1"> <br> </p> <p> Some points to note: <ol> <li>The two data streams: <ul> <li> do not have the same sampling frequency.</li> <li> are not of the same length (nsecs).</li> </ul></li> <li>The interferometer data has a small transient at the start</li> </ol> </p> <p> To have a closer look at the samples we plot markers at each sample and only plot a zoomed-in section. You can do this by creating a parameter list with the following key/value pairs (remember the 'key' properties for <tt>plist</tt> entries is not case sensitive): </p> <p> <table cellspacing="0" class="body" cellpadding="2" border="0" width="50%"> <colgroup> <col width="35%"/> <col width="65%"/> </colgroup> <thead> <tr valign="top"> <th class="categorylist">Key</th> <th class="categorylist">Value</th> </tr> </thead> <tbody> <!-- Key 'arrangement' --> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><tt>ARRANGEMENT</tt></p> </td> <td bgcolor="#f3f4f5"> <span class="string">'subplots'</span> </td> </tr> <!-- Key 'arrangement' --> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><tt>LINESTYLES</tt></p> </td> <td bgcolor="#f3f4f5"> {<span class="string">'none'</span>,<span class="string">'none'</span>} </td> </tr> <!-- Key 'markers' --> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><tt>MARKERS</tt></p> </td> <td bgcolor="#f3f4f5"> {<span class="string">'+'</span>,<span class="string">'+'</span>} </td> </tr> <!-- Key 'xranges' --> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><tt>XRANGES</tt></p> </td> <td bgcolor="#f3f4f5"> {<span class="string">'all'</span>, [200 210]} </td> </tr> <!-- Key 'yranges' --> <tr valign="top"> <td bgcolor="#f3f4f5"> <p><tt>YRANGES</tt></p> </td> <td bgcolor="#f3f4f5"> {[2e-7 3e-7], [200 350]} </td> </tr> </tbody> </table> </p> <p> <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> <tr width="90%"> <td> Notice the use of the keyword 'all' in the value for the 'XRANGES' parameter. Many of the <tt>iplot</tt> options support this keyword, which tells <tt>iplot</tt> to use the same value for all plots and subplots. For the 'YRANGES' we specify different values for each subplot. </td> </tr> </table> </p> <p> <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> <tr width="90%"> <td> Please store your parameter lists in 2 different variables. We can reuse them for plotting our results later. If you are working on a pipeline insteaad of a script, you can use two <tt>plist</tt> constructor blocks and pass these as an input to an <tt>iplot</tt> block. </td> </tr> </table> </p> <p> Passing such a parameter list to <tt>iplot</tt> together with the two AO time-series should yield a plot something like: </p> <br> <img src="images/ltpda_training_1/topic2/samples.png" alt="samples" border="1"> <br> <p> From this plot you may be able to see that the temperature data is <bb>unevenly sampled</bb>. </p> <p> To confirm this, enter the following (standard) MATLAB commands on the terminal: </p> <div class="fragment"><pre> dt = diff(temp.x); min(dt) max(dt) </pre></div> <p> <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> <tr width="90%"> <td> Don't forget the semicolon at the end of the <tt>diff</tt> calculation; this is a long data series and will be printed to the terminal if you do forget. </td> </tr> </table> You see that the minimum and maximum difference in the time-stamps of the data is different, showing that the data are not evenly sampled. </p> <p> Before we proceed with the later analysis of this data, we need to <ul> <li>Fix the uneven sampling of the temperature data</li> <li>Resample both data streams to the same rate</li> <li>Resample both data streams on to the same timing grid</li> <li>Select the segment of interferometer data that matches the temperature data</li> </ul> </p> <p> Each of these steps can, in principle, be done by hand. However, LTPDA provides a 'data fixer' method called <tt>ao/consolidate</tt> which attempts to automate this process. The call to <tt>consolidate</tt> is shown below: </p> <div class="fragment"><pre> [temp_fixed ifo_fixed] = consolidate(temp, ifo, plist(<span class="string">'fs'</span>,1)); </pre></div> <p> We tell <tt>consolidate</tt> that we want to have our data resampled to 1 Hz by specifying the parameter key 'fs'. </p> <p> Now we can inspect the time-series of these data. The result should look something like the figure below: </p> <br> <img src="images/ltpda_training_1/topic2/ifo_temp_consolidated.png" alt="consolidated" border="1"> <br> <p> <table cellspacing="0" class="note" summary="Note" cellpadding="5" border="1"> <tr width="90%"> <td> Note that the time origin above the plots has now changed from zero to 13.105 which was the time of the first sample in the temperature measurement. </td> </tr> </table> </p> <p> If we also plot the zoomed-in view again, we should see something like: </p> <img src="images/ltpda_training_1/topic2/samples_conso.png" alt="consolidated samples" border="1"> <p> As you can see <tt>consolidate</tt> solved all our issues with these two data streams. They now start at the same time and are evenly sampled at the same sampling frequency. </p> <p> In the next topic, we will look at the spectral content and coherence of the data before and after the pre-processing. For now, finish by saving the consolidated data ready for the next topic. </p> <div class="fragment"><pre> save(temp_fixed,<span class="string">'ifo_temp_example/temp_fixed.xml'</span>); save(ifo_fixed,<span class="string">'ifo_temp_example/ifo_fixed.xml'</span>); </pre></div> </p> <br> <br> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr valign="top"> <td align="left" width="20"><a href="ltpda_training_topic_2_8.html"><img src= "b_prev.gif" border="0" align="bottom" alt= "Split and join AOs"></a> </td> <td align="left">Split and join AOs</td> <td> </td> <td align="right">Topic 3 - Spectral Analysis</td> <td align="right" width="20"><a href= "ltpda_training_topic_3.html"><img src="b_next.gif" border="0" align= "bottom" alt="Topic 3 - Spectral Analysis"></a></td> </tr> </table><br> <p class="copy">©LTP Team</p> </body> </html>