view m-toolbox/test/test_ao_xfit.m @ 28:01b86b780ba7 database-connection-manager

Remove LTPDARepositoryManager implementation. Java code
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Mon, 05 Dec 2011 16:20:06 +0100
parents f0afece42f48
children
line wrap: on
line source

% Tests for xfit
%
% $Id: test_ao_xfit.m,v 1.7 2011/05/12 07:58:57 mauro Exp $
%

%% Case 1: Fit with function in plist
% Fit to a frequency-series

% Create a frequency-series
datapl = plist('fsfcn', '0.01./(0.0001+f) + 5*abs(randn(size(f))) ', 'f1', 1e-5, 'f2', 5, 'nf', 1000, ...
  'xunits', 'Hz', 'yunits', 'N/Hz');
data = ao(datapl);
data.setName;

% Do fit
fitpl = plist('Function', 'P(1)./(P(2) + Xdata) + P(3)', ...
  'P0', [0.1 0.01 1]);
params = xfit(data, fitpl);

% Evaluate model
BestModel = eval(params, plist('type','fsdata','xdata',data,'xfield','x'));
BestModel.setName;

% Display results
iplot(data,BestModel)

%% Case 2: Fit with function in plist

% Create a noisy sine-wave
fs    = 10;
nsecs = 500;
datapl = plist('waveform', 'Sine wave', 'f', 0.01, 'A', 0.6, 'fs', fs, 'nsecs', nsecs, ...
  'xunits', 's', 'yunits', 'm');
sw = ao(datapl);
noise = ao(plist('tsfcn', '0.01*randn(size(t))', 'fs', fs, 'nsecs', nsecs));
data = sw+noise;
data.setName;

% Do fit
fitpl = plist('Function', 'P(1).*sin(2*pi*P(2).*Xdata + P(3))', ...
  'P0', [1 0.01 0]);
params = xfit(data, fitpl);

% Evaluate model
BestModel = eval(params, plist('type','tsdata','xdata',data,'xfield','x'));
BestModel.setName;

% Display results
iplot(data,BestModel)

%% Case 3: Fit with smodel

% Fit an smodel of a straight line to some data

% Create a noisy straight-line
datapl = plist('xyfcn', '2.33 + 0.1*x + 0.01*randn(size(x))', 'x', 0:0.1:10, ...
  'xunits', 's', 'yunits', 'm');
data = ao(datapl);
data.setName;

% Model to fit
mdl = smodel('a + b*x');
mdl.setXvar('x');
mdl.setParams({'a', 'b'}, {1 2});

% Fit model
fitpl = plist('Function', mdl, 'P0', [1 1]);
params = xfit(data, fitpl);

% Evaluate model
BestModel = eval(params,plist('xdata',data,'xfield','x'));
BestModel.setName;

% Display results
iplot(data,BestModel)

%% Case 4: Fit with smodel:
% Fit a chirp-sine firstly starting from an initial guess (quite close
% to the true values) (bad convergency) and secondly by a Monte Carlo
% search (good convergency)

% Create a noisy chirp-sine
fs    = 10;
nsecs = 1000;

% Model to fit and generate signal
mdl = smodel(plist('name', 'chirp', 'expression', 'A.*sin(2*pi*(f + f0.*t).*t + p)', ...
  'params', {'A','f','f0','p'}, 'xvar', 't', 'xunits', 's', 'yunits', 'm'));

% signal
s = mdl.setValues({10,1e-4,1e-5,0.3});
s.setXvals(0:1/fs:nsecs-1/fs);
signal = s.eval;
signal.setName;

% noise
noise = ao(plist('tsfcn', '1*randn(size(t))', 'fs', fs, 'nsecs', nsecs));

% data
data = signal + noise;
data.setName;

% Fit model from the starting guess
fitpl_ig = plist('Function', mdl, 'P0',[8,9e-5,9e-6,0]);
params_ig = xfit(data, fitpl_ig);

% Evaluate model
BestModel_ig = eval(params_ig,plist('xdata',data,'xfield','x'));
BestModel_ig.setName;

% Display results
iplot(data,BestModel_ig)

% Fit model by a Monte Carlo search
fitpl_mc = plist('Function', mdl, ...
  'MonteCarlo', 'yes', 'Npoints', 1000, 'LB', [8,9e-5,9e-6,0], 'UB', [11,3e-4,2e-5,2*pi]);
params_mc = xfit(data, fitpl_mc);

% Evaluate model
BestModel_mc = eval(params_mc,plist('xdata',data,'xfield','x'));
BestModel_mc.setName;

% Display results
iplot(data,BestModel_mc)

%% Case 5: Fit multichannel with smodel

% Ch.1 data
datapl = plist('xyfcn', '0.1*x + 0.01*randn(size(x))', 'x', 0:0.1:10, 'name', 'channel 1', ...
  'xunits', 'K', 'yunits', 'Pa');
a1 = ao(datapl);
% Ch.2 data
datapl = plist('xyfcn', '2.5*x + 0.1*sin(2*pi*x) + 0.01*randn(size(x))', 'x', 0:0.1:10, 'name', 'channel 2', ...
  'xunits', 'K', 'yunits', 'T');
a2 = ao(datapl);

% Model to fit
mdl1 = smodel('a*x');
mdl1.setXvar('x');
mdl1.setParams({'a'}, {1});
mdl1.setXunits('K');
mdl1.setYunits('Pa');

mdl2 = smodel('b*x + a*sin(2*pi*x)');
mdl2.setXvar('x');
mdl2.setParams({'a','b'}, {1,2});
mdl2.setXunits('K');
mdl2.setYunits('T');

% Fit model
params = xfit(a1,a2, plist('Function', [mdl1,mdl2]));

% evaluate model
b = eval(params, plist('index',1,'xdata',a1,'xfield','x'));
b.setName('fit Ch.1');
r = a1-b;
r.setName('residuals');
iplot(a1,b,r)

b = eval(params, plist('index',2,'xdata',a2,'xfield','x'));
b.setName('fit Ch.2');
r = a2-b;
r.setName('residuals');
iplot(a2,b,r)