Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/rootmusic.m @ 24:056f8e1e995e database-connection-manager
Properly record history in fromRepository constructors
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 (2011-12-05) |
parents | f0afece42f48 |
children |
line wrap: on
line source
function [w_i,powers,w_mse,p_mse] = rootmusic(x,p,varargin) %ROOTMUSIC Computes the frequencies and powers of sinusoids via the % Root MUSIC algorithm. % W = ROOTMUSIC(X,P) returns the vector of frequencies W of the complex % sinusoids contained in signal vector X. W is in units of rad/sample. % P is the number of complex sinusoids in X. If X is a data matrix, % each row is interpreted as a separate sensor measurement or trial. % In this case, X must have a number of columns larger than P. You can % use the function CORRMTX to generate data matrices to be used here. % % W = ROOTMUSIC(R,P,'corr') returns the vector of frequencies W, for a % signal whose correlation matrix estimate is given by the positive % definite matrix R. Exact conjugate-symmetry of R is ensured by forming % (R+R')/2 inside the function. The number of rows or columns of R must % be greater than P. % % If P is a two element vector, P(2) is used as a cutoff for signal and % noise subspace separation. All eigenvalues greater than P(2) times % the smallest eigenvalue are designated as signal eigenvalues. In % this case, the signal subspace dimension is at most P(1). % % F = ROOTMUSIC(...,Fs) uses the sampling frequency Fs in the computation % and returns the vector of frequencies, F, in Hz. % % [W,POW] = ROOTMUSIC(...) returns in addition a vector POW containing the % estimates of the powers of the sinusoids in X. % % EXAMPLES: % s1 = RandStream.create('mrg32k3a'); % n=0:99; % s=exp(i*pi/2*n)+2*exp(i*pi/4*n)+exp(i*pi/3*n)+randn(s1,1,100); % X=corrmtx(s,12,'mod'); % Estimate the correlation matrix using % % the modified covariance method. % [W,P] = rootmusic(X,3); % % See also ROOTEIG, PMUSIC, PEIG, PMTM, PBURG, PWELCH, CORRMTX, SPECTRUM. % Reference: Stoica, P. and R. Moses, INTRODUCTION TO SPECTRAL ANALYSIS, % Prentice-Hall, 1997. % Author(s): R. Losada % Copyright 1988-2008 The MathWorks, Inc. % $Revision: 1.1 $ $Date: 2010/02/18 11:16:00 $ %%%%%%%%%%%%%%%%%%%%%%%% % % Added function to compute approx. MSE for the case of a unique sinusoid % % REFERENCES: Rao, B. Performance Analysis of Root-Music % IEEE Trans. Acoust. Speech and Sig. Proc. 37, 1989 % % VERSION: $Id: rootmusic.m,v 1.1 2010/02/18 11:16:00 miquel Exp $ % % M Nofrarias 12/02/2010 % error(nargchk(2,5,nargin,'struct')); xIsReal = isreal(x); % Check for an even number of complex sinusoids if data is real if xIsReal && rem(p,2), error(generatemsgid('InvalidDimensions'),'Real signals require an even number p of complex sinusoids.'); end nfft = []; % Root Music doesn't use nfft, but the parser needs it varargin = {nfft,varargin{:}}; [md,msg] = utils.math.music(x,p,varargin{:}); if ~isempty(msg), error(generatemsgid('SigErr'),msg); end % Find the Complex Sinusoid Frequencies w_i = compute_freqs(md.noise_eigenvects,md.p_eff,md.EVFlag,md.eigenvals); % Estimate the noise variance as the average of the noise subspace eigenvalues sigma_w = sum(md.eigenvals(md.p_eff+1:end))./size(md.noise_eigenvects,2); % Estimate the power of the sinusoids [powers] = compute_power(md.signal_eigenvects,md.eigenvals,w_i,md.p_eff,sigma_w,xIsReal); % Compute MSE [w_mse,p_mse] = compute_mse(sigma_w,powers,length(x)); % Convert the estimated frequencies to Hz if Fs was specified if ~isempty(md.Fs), w_i = w_i*md.Fs./(2*pi); w_mse = w_mse*(md.Fs./(2*pi))^2; end %--------------------------------------------------------------------------------------------- function w_i = compute_freqs(noise_eigenvects,p_eff,EVFlag,eigenvals) %Compute the frequencies via the roots of the polynomial formed with the noise eigenvectors % % Inputs: % % noise_eigenvects - a matrix whose columns are the noise subspace eigenvectors % p_eff - signal subspace dimension % EVFlag - a flag indicating of the eigenvector methos should be used % eigenvals - a vector with all the correlation matrix eigenvalues. % However, we use only the noise eigenvalues as weights % in the eigenvector method. % % Outputs: % % w_i - frequencies of the complex sinusoids % compute weights if EVFlag, % Eigenvector method, use eigenvalues as weights weights = eigenvals(end-size(noise_eigenvects,2)+1:end); % Use the noise subspace eigenvalues else weights = ones(1,size(noise_eigenvects,2)); end % Form a polynomial D, consisting of a sum of polynomials given by the product of % the noise subspace eigenvectors and the reversed and conjugated version. D = 0; for i = 1:length(weights), D = D + conv(noise_eigenvects(:,i),conj(flipud(noise_eigenvects(:,i))))./weights(i); end roots_D = roots(D); % Because D is formed from the product of a polynomial and its conjugated and reversed version, % every root of D inside the unit circle, will have a "reflected" version outside the unit circle. % We choose to use the ones inside the unit circle, because the distance from them to the unit % circle will be smaller than the corresponding distance for the "reflected" root. roots_D1 = roots_D(abs(roots_D) < 1); % Sort the roots from closest to furthest from the unit circle [not_used,indx] = sort(abs(abs(roots_D1)-1)); %#ok sorted_roots = roots_D1(indx); % Use the first p_eff roots to determine the frequencies w_i = angle(sorted_roots(1:p_eff)); %----------------------------------------------------------------------------------------------- function [powers] = compute_power(signal_eigenvects,eigenvals,w_i,p_eff,sigma_w,xIsReal) %COMPUTE_POWER Solves the system of linear eqs. to calculate the power of the sinusoids. % % Inputs: % % signal_eigenvects - the matrix whose columns are the signal subspace eigenvectors % eigenvals - a vector containing all eigenvalues of the correlation matrix % w_i - a vector of frequency estimates of the sinusoids % p_eff - the dimension of the signal subspace % sigma_w - the estimate of the variance of the white noise % xIsReal - a flag indicating wether we have real or complex sinusoids % % Outputs: % % powers - a vector that contains the power of each sinusoid %This is just the solution of a linear system of eqs, Ax=b % For real sinusoids, the system of eqs. has half the number of unknowns if xIsReal, w_i = reshape(w_i,2,length(w_i)./2); w_i = w_i(1,:); % Use only the positive freqs. w_i = w_i(:); p_eff = p_eff./2; end % Form the A matrix if length(w_i) == 1, % FREQZ does not compute the gain at a single frequency, handle this separately A = polyval(signal_eigenvects(:,1),exp(1i*w_i)); else for n = 1:p_eff, A(:,n) = freqz(signal_eigenvects(:,n),1,w_i); end end A = abs(A.').^2; % Form the b vector b = eigenvals(1:p_eff) - sigma_w; % The powers are simply the solution to the set of eqs. powers = A\b; %-------------------------------------------------------------------------- function [w_mse,p_mse] = compute_mse(sigma_w,powers,N) % implements eq.30 in Reference L = 1; % one element array p_mse = 12 * (sigma_w/(powers*N*L^2)); % first term of eq.30 in paper is to pass from frequency to DOA % this sigma_w^2 could be wrong w_mse = 12/(2*L)* (sigma_w^2/(powers*N*L^2)); % [EOF] rootmusic.m