Mercurial > hg > ltpda
view m-toolbox/classes/@ao/getdof.m @ 49:0bcdf74587d1 database-connection-manager
Cleanup
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:24:36 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% GETDOF Calculates degrees of freedom for psd, lpsd, cohere and lcohere %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: GETDOF Input psd or mscohere (magnitude square coherence) % estimated with the WOSA (Welch's Overlapped Segment Averaging Method) and % return degrees of freedom of the estimator. % % CALL: dof = getdof(a,pl) % % INPUTS: % a - input analysis objects containing power spectral % densities or magnitude squared coherence. % pl - input parameter list % % OUTPUTS: % dof - cdata AO with degrees of freedom for the % corresponding estimator. If the estimators are lpsd % or lcohere then dof number of elements is the same of % the spectral estimator % % % If the last input argument is a parameter list (plist). % The following parameters are recognised. % % % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'getdof')">Parameters Description</a> % % VERSION: $Id: getdof.m,v 1.19 2011/05/23 20:36:47 mauro Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = getdof(varargin) %%% Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); %%% Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end %%% Collect all AOs [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); %%% avoid multiple AO at input if numel(as) > 1 error('!!! Too many input AOs, GETDOF can process only one AO per time !!!') end %%% check that fsdata is input if ~isa(as.data, 'fsdata') error('!!! Non-fsdata input, GETDOF can process only fsdata !!!') end %%% avoid input modification if nargout == 0 error('!!! GETDOF cannot be used as a modifier. Please give an output variable !!!'); end %%% Parse plists pl = parse(pl, getDefaultPlist()); %%% Find parameters mtd = lower(find(pl, 'method')); if ~ischar(mtd) error('!!! Method must be a string !!!') end mtd = lower(mtd); Ntot = find(pl,'DataLength'); %%% switching over methods switch mtd case 'psd' % get hist hst = as.hist; % get nodes [n,a, nodes] = getNodes(hst); % get plists from nodes pls = [nodes(:).pl]; if numel(pls) > 1 plss = pls(1); for ii = 2:numel(pls)-1 plss = parse(plss, pls(ii)); end end % get number of averages navs = as.data.navs; % get window object w = find(plss, 'WIN'); % percentage of overlap olap = find(plss, 'OLAP')./100; % number of bins in each fft nfft = find(plss, 'NFFT'); psll = find(plss, 'psll'); % Normalize window data in order to be square integrable to 1 if ischar(w) switch lower(w) case 'kaiser' Win = specwin(w, nfft, psll); otherwise Win = specwin(w, nfft); end else Win = w; end win = Win.win ./ sqrt(Win.ws2); % Calculates total number of data in the original time-series if isempty(Ntot) Ntot = ceil(navs*(nfft-olap*nfft)+olap*nfft); end if navs == 1 dofs = round(2*navs); else [R,n] = utils.math.overlapCorr(win,Ntot,navs); dof = 2*navs/(2*R*navs+1); dofs = round(dof); end case 'lpsd' % get hist hst = as.hist; % get nodes [n,a, nodes] = getNodes(hst); % get plists from nodes pls = [nodes(:).pl]; if numel(pls) > 1 plss = pls(1); for ii = 2:numel(pls)-1 plss = parse(plss, pls(ii)); end end % get window used uwin = find(plss, 'WIN'); % extract number of frequencies bins nf = length(as.x); % dft length for each bin if ~isempty(as.procinfo) L = as.procinfo.find('L'); else error('### The AO doesn''t have any procinfo with the key ''L'''); end % set original data length as the length of the first window if isempty(Ntot) nx = L(1); else nx = Ntot; end % windows overlap olap = find(plss, 'OLAP')./100; psll = find(plss, 'psll'); dofs = ones(nf,1); for jj = 1:nf l = L(jj); % compute window if ischar(uwin) switch lower(uwin) case 'kaiser' w = specwin(uwin, l, psll); otherwise w = specwin(uwin, l); end else w = uwin; end % Normalize window data in order to be square integrable to 1 owin = w.win; owin = owin./sqrt(w.ws2); % Compute the number of averages we want here segLen = l; nData = nx; ovfact = 1 / (1 - olap); davg = (((nData - segLen)) * ovfact) / segLen + 1; navg = round(davg); if navg == 1 dof = 2*navg; else [R,n] = utils.math.overlapCorr(owin,nx,navg); dof = 2*navg/(2*R*navg+1); end % storing c and dof dofs(jj) = dof; end % for jj=1:nf case 'mscohere' % get hist hst = as.hist; % get nodes [n,a, nodes] = getNodes(hst); % get plists from nodes pls = [nodes(:).pl]; if numel(pls) > 1 plss = pls(1); for ii = 2:numel(pls)-1 plss = parse(plss, pls(ii)); end end % get number of averages navs = as.data.navs; % get window object w = find(plss,'WIN'); % percentage of overlap olap = find(plss,'OLAP')./100; % number of bins in each fft nfft = find(plss,'NFFT'); psll = find(plss, 'psll'); % Normalize window data in order to be square integrable to 1 if ischar(w) switch lower(w) case 'kaiser' Win = specwin(w, nfft, psll); otherwise Win = specwin(w, nfft); end else Win = w; end win = Win.win ./ sqrt(Win.ws2); % Calculates total number of data in the original time-series if isempty(Ntot) Ntot = ceil(navs*(nfft-olap*nfft)+olap*nfft); end if navs == 1 dofs = round(2*navs); else [R,n] = utils.math.overlapCorr(win,Ntot,navs); dof = 2*navs/(2*R*navs+1); dofs = round(dof); end case 'mslcohere' % get hist hst = as.hist; % get nodes [n,a, nodes] = getNodes(hst); % get plists from nodes pls = [nodes(:).pl]; if numel(pls) > 1 plss = pls(1); for ii = 2:numel(pls)-1 plss = parse(plss, pls(ii)); end end % get window used uwin = find(plss,'WIN'); % extract number of frequencies bins nf = length(as.x); % dft length for each bin if ~isempty(as.procinfo) L = as.procinfo.find('L'); else error('### The AO doesn''t have any procinfo with the key ''L'''); end % set original data length as the length of the first window if isempty(Ntot) nx = L(1); else nx = Ntot; end % windows overlap olap = find(plss, 'OLAP')./100; psll = find(plss, 'psll'); dofs = ones(nf, 1); for jj = 1:nf l = L(jj); % compute window if ischar(uwin) switch lower(uwin) case 'kaiser' w = specwin(uwin, l, psll); otherwise w = specwin(uwin, l); end else w = uwin; end % Normalize window data in order to be square integrable to 1 owin = w.win ./ sqrt(w.ws2); % Compute the number of averages we want here segLen = l; nData = nx; ovfact = 1 / (1 - olap); davg = (((nData - segLen)) * ovfact) / segLen + 1; navg = round(davg); if navg == 1 dof = 2*navg; else [R,n] = utils.math.overlapCorr(owin,nx,navg); dof = 2*navg/(2*R*navg+1); end % storing c and dof dofs(jj) = dof; end % for jj=1:nf end %switch mtd % Output data % dof ddof = cdata(); ddof.setY(dofs); odof = ao(ddof); % Set output AO name odof.name = sprintf('dof(%s)', ao_invars{:}); % Add history odof.addHistory(getInfo('None'), pl, [ao_invars(:)], [as.hist]); % output if nargout == 1 varargout{1} = odof; else error('!!! getdof can have only one output') end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist(); end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: getdof.m,v 1.19 2011/05/23 20:36:47 mauro Exp $', sets, pl); ii.setModifier(false); ii.setOutmin(1); ii.setOutmax(1); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if ~exist('pl', 'var') || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); p = param({'method', ['Set the desired method. Supported values are<ul>'... '<li>''psd'' power spectrum calculated with ao/psd, whatever the scale</li>'... '<li>''lpsd'' power spectrum calculated with ao/lpsd, whatever the scale</li>'... '<li>''mscohere'' magnitude square coherence spectrum calculated with ao/cohere</li>'... '<li>''mslcohere'' magnitude square coherence spectrum calculated with ao/lcohere</li>']}, ... {1, {'psd', 'lpsd', 'mscohere', 'mslcohere'}, paramValue.OPTIONAL}); pl.append(p); p = param({'DataLength',['Data length of the time series.'... 'It is better to input for more stable calculation.'... 'Leave it empty if you do not know its value.']},... paramValue.EMPTY_DOUBLE); pl.append(p); end % END