Mercurial > hg > ltpda
view m-toolbox/classes/@ao/fngen.m @ 39:11e3ed9d2115 database-connection-manager
Implement databases listing in database connection dialog
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% FNGEN creates an arbitrarily long time-series based on the input PSD. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: FNGEN creates an arbitrarily long time-series based on the input PSD. % % CALL: b = fngen(axx, pl) % % PARAMETERS: % 'Nsecs' - The number of seconds to produce % [default: inverse of PSD length] % 'Win' - The spectral window to use for blending segments % [default: Kaiser -150dB] % % % NOTE: this function requires the Statistics Toolbox in order to create % a chi^2 distributed random variable. % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'fngen')">Parameters Description</a> % % VERSION: $Id: fngen.m,v 1.33 2011/04/08 08:56:16 hewitson Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = fngen(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); if nargout == 0 error('### fngen cannot be used as a modifier. Please give an output variable.'); end % combine plists pl = parse(pl, getDefaultPlist()); % Extract necessary parameters Nsecs = find(pl, 'Nsecs'); swin = find(pl, 'win'); % Loop over input AOs bs = []; for j=1:numel(as) if ~isa(as(j).data, 'fsdata') warning('!!! %s expects ao/fsdata objects. Skipping AO %s', mfilename, as(j).name); else % Properties of the input PSD N = 2*(length(as(j).data.y)-1); fs = as(j).data.x(end)*2; % Extract Fourier components Ak = sqrt(N*as(j).data.getY*fs); Ak = [Ak; Ak(end-1:-1:2)]; % make two-sided % redesign input window for this length switch lower(swin.type) case 'kaiser' swin = specwin('Kaiser', N, swin.psll); otherwise swin = specwin(swin.type, N); end % Compute time-series segments Olap = 1-swin.rov/100; win = [swin.win].'; segLen = N/fs; if segLen > Nsecs cNsecs = 2*segLen; else cNsecs = Nsecs; end Nsegs = 1+floor(cNsecs/segLen/Olap); % Prepare for generation rphi = zeros(N,1); % Empty vector for random phases xs = zeros(fs*(cNsecs+segLen), 1); % Large empty vector for new time-series e1 = 1; e2 = segLen*fs; % Indices into large vector step = round(segLen*fs*Olap); % step size between each new segment lxs = length(xs); % Loop over segments for s=1:Nsegs % Generate random phase vector rphi(2:N/2) = pi*rand(1,N/2-1); % First half rphi(N/2+1) = pi*round(rand); % mid point rphi(N/2+2:N) = -rphi(N/2:-1:2); % reflected half %---- Compute Fourier amplitudes % Use chi^2 distribution to randomize amplitudes. % - from Percival and Walden: S_est = S.*chi2rnd(2)/2 % so A_est = A.*sqrt(chi2rnd(2)/2) % Here we take the measured input data to be a good estimate of % the underlying power spectrum X = (Ak.*sqrt(chi2rnd(2)/2)) .*exp(1i.*rphi); % Inverse FFT x = ifft(X, 'symmetric'); % overlap the segments xs(e1:e2) = xs(e1:e2) + win.*x; % increase step e1 = e1 + step; e2 = e2 + step; if e2>lxs break end end % Make ao from the segment of data we want e1 = fs*segLen/2; e2 = fs*(Nsecs+segLen/2)-1; b = ao(tsdata(xs(e1:e2).', fs)); b.name = sprintf('fngen(%s)', ao_invars{j}); b.data.setXunits('s'); % Add history b.addHistory(getInfo('None'), pl, ao_invars(j), as(j).hist); % Add to outputs bs = [bs b]; end end % Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: fngen.m,v 1.33 2011/04/08 08:56:16 hewitson Exp $', sets, pl); ii.setModifier(false); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % Win p = param({'Win', 'The spectral window to use for blending data segments.'}, paramValue.WINDOW); pl.append(p); % Nsecs p = param({'Nsecs', 'The number of seconds of data to produce.'}, paramValue.EMPTY_DOUBLE); pl.append(p); end