Mercurial > hg > ltpda
view m-toolbox/classes/@ao/gapfillingoptim.m @ 39:11e3ed9d2115 database-connection-manager
Implement databases listing in database connection dialog
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% GAPFILLINGOPTIM fills possible gaps in data. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: GAPFILLINGOPTIM minimizes a chi square based on the signal's % expected PSD. It uses ao/optSubtraction for the small scale % algorithm, optSubstitution for the large scale algorithm. % % CALL: [aoGapsFilled, plOut, aoP, aoPini, aoWindow, aoWindowShift] = ao.gapfilling(plist) % % INPUTS: ao_data - data segment with the signal to reconstitue % pl - parameter list % % OUTPUTS: aoGapsFilled - data segment containing ao_data, with filled data gaps % plOut - output plist containing the output of % gapFillingOptim % aoP, aoPini - final and initial frequency PSD used to weight % the optimal problem % aoWindow - window used for estmating spectrum % aoWindowShift - shifted window used for optimizing spectrum % % <a href="matlab:utils.helper.displayMethodInfo('ao', 'gapfillingoptim')">Parameters Description</a> % % VERSION: $Id: gapfillingoptim.m,v 1.27 2011/06/11 14:11:27 adrien Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = gapfillingoptim(varargin) % y ycalib fs isgap iscalib freq_weight ncalib ndata nfft ngaps %%% Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end %% Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs [aos, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); pli = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Get default parameters pl = combine(pli, getDefaultPlist); %% declaring global optData variable clear global optData global optData %% getting time-series to fill, and usefull data (frequencies, number of frequencies... ) if numel(aos)==0 error('Nothing to fill gaps!') elseif numel(aos)>1 error('The filling algorithm only works for one single signal at a time') end optData.nData = numel(aos.y); optData.yNorm = norm(aos.y) / optData.nData; optData.y = aos.y / optData.yNorm; optData.Ts = 1/aos(1).fs; optData.nFreqs = floor(optData.nData/2)+1; optData.freqs = linspace(0, 1/(2*optData.Ts), optData.nFreqs); optData.keepFreqs = [true(1,sum(optData.nFreqs)) false(1,sum(optData.nFreqs)-1)]; %% finding gaps aoGaps = pl.find('isgap'); if isempty(aoGaps) error('no gap vector provided!') elseif isequal(aoGaps,'zeros') optData.isGap = (aos.y==0); elseif numel(isempty(aoGaps))>1 error('please provide only one gap vector!') elseif isa(aoGaps.y, 'double') optData.isGap = (aoGaps.y==0); elseif isa(aoGaps.y, 'logical') optData.isGap = aoGaps.y; else error('wrong type for parameter "isGap"') end optData.gapsPos = find(optData.isGap); optData.nGaps = numel(optData.gapsPos); clear aoGaps %% checking number of gaps is not zero if numel(optData.gapsPos)==0 error('No gap to fill!') end if numel(optData.isGap) ~= optData.nData error('gap vector is not the same length as the gapped vector!') end %% produce LF window Win = find(pl, 'Win'); if isa(Win, 'plist') Win = ao( combine(plist( 'length', optData.nData), Win) ); optData.lfWin = Win.y; elseif isa(Win, 'ao') if ~isa(Win.data, 'tsdata') error('An ao window should be a time series') end optData.lfWin = Win.y; if ~length(optData.lfWin)==optData.nData error('signals and windows don''t have the same length') end else error('input option Win is not acceptable (not a plist nor an ao)!') end %% produce HF window [shiftVals, shiftCounts, winHF, winsHfShift] = makeHFWindows(optData.nData, optData.gapsPos); optData.nShifts = numel(shiftVals); optData.shiftVals = shiftVals; optData.shiftCounts = shiftCounts; optData.hfWin = winHF; optData.win = optData.lfWin .* optData.hfWin; optData.winsHfShift = winsHfShift; optData.winsShift = winsHfShift; for iiShift = 1:(2*optData.nShifts) optData.winsShift(:, iiShift) = optData.winsHfShift(:, iiShift) .* optData.lfWin; end clear shiftVals shiftCounts winHF winsHfShift %% get initial M coefficient matrix M = pl.find('coefs'); if isempty(M) M = zeros(1,optData.nGaps); end %% detrending (with a windowing agains HF noise) trends = [ones(optData.nData,1) linspace(-1,1,optData.nData).' ]; % two orthogonal vectors to subtract trendsWindowed = trends .* [optData.win optData.win]; % windowing is applied to estimate trends yWindowed = optData.y .* optData.win; % windowing is applied to de-trened data to be consistent optData.trend = pinv(trendsWindowed) * yWindowed; % solution of the least-square problem trendCorrection = trends * optData.trend; % trend is removed from the data while filling gaps. It is re-added later on. optData.y = optData.y - trendCorrection; % detrended vector optData.y(optData.gapsPos) = zeros(size(optData.gapsPos)); % setting to zero the gap-data %% get sPSD averaging linear-scaling averaging-width coefficient optData.linCoef = pl.find('linCoef'); optData.logCoef = pl.find('logCoef'); %% get MAX/EXP iterations termination conditions iterMax = pl.find('iterMax'); optData.criterion = pl.find('fitCriterion'); normCriterion = pl.find('normCriterion'); normCoefs = pl.find('normCoefs'); %% set optim CVG options options.MaxFunEvals = pl.find('maxCall'); options.Display = pl.find('display'); options.TolFun = min( pl.find('normCriterion'), 1e-12 ); options.TolX = min( pl.find('normCoefs'), 1e-14 ); options.MaxIter = pl.find('maxCall'); doHessian = pl.find('Hessian'); if ~isempty(doHessian) error('Hessian option is now deactivated as it is too demanding computationaly') end %% computing various useful quantities used for the criterion computation weightingMethod =pl.find('weightingMethod'); switch weightingMethod case 'pzmodel' weightModel = pl.find('pzmodelWeight'); if numel(weightModel) ~= 1 error('there should be only one pzmodel') end weight = weightModel.resp(optData.freqs); weight = abs(weight).^2; Ploc = weight.y; [freqsAvg, pAvg, nFreqsAvg, nDofs, sumMat] = ltpda_spsd(optData.freqs, Ploc, optData.linCoef, optData.logCoef); %#ok<ASGLU> case 'ao' weight =pl.find('aoWeight'); if numel(weight)~=1 error('there should be as many pzmodels as weighted entries') end if ~isa(weight.data, 'tsdata') error('if the weight is an ao, it should be a FSdata') elseif length(weight.y)==optData.nFreqs error(['length of FS weight is not length of the FFT vector : ' num2str(length(weight.y)) 'instead of ' num2str(optData.nFreqs)]) else Ploc = weight.y; [freqsAvg, pAvg, nFreqsAvg, nDofs, sumMat] = ltpda_spsd(optData.freqs, Ploc, optData.linCoef, optData.logCoef); %#ok<ASGLU> end case 'residual' [pAvg, freqsAvg, powSigma, sumMat, nFreqsAvg ] = computeWeight( optData.y, M, optData.gapsPos, optData.freqs); otherwise error('weighting method requested does not exist!') end %% Maximization Expectation iteration loop for i_iter = 1:iterMax utils.helper.msg(utils.const.msg.PROC3, ['starting iteration ', num2str(i_iter)]); %% setting weight in optData optData.sumMat = sumMat; optData.nFreqsAvg = nFreqsAvg; optData.powInv = pAvg.^-1; optData.logProbaDensityFactor = - nFreqsAvg * log(2) - gammaln(nFreqsAvg); %% initializing historical outputs if i_iter==1 % storing intial weight Pini = pAvg; MHist(1,:) = reshape(M, [1, numel(M)] ); end fValIni = optimalCriterion(M); %% minimizing the criterion switch lower(optData.criterion) case 'ftest' M = solveProblemFTest( optData.gapsPos, optData.powInv, optData.nFreqsAvg); % very fast direct solver in this case fval = optimalCriterion(M); case 'ftest-nohfwin' M = solveProblemFTestNoHFWin( optData.gapsPos, optData.powInv, optData.nFreqsAvg); % very fast direct solver in this case fval = optimalCriterion(M); otherwise M = solveProblemFTest( optData.gapsPos, optData.powInv, optData.nFreqsAvg); % initialize with fast solver (with the wrong criterion, but it doesn't matter so much) [M, fval] = fminunc(@optimalCriterion,M,options); % further non-linear minimzation steps with correct criterion end %% updating weight [pAvg, freqsAvg] = computeWeight(optData.y, M, optData.gapsPos, optData.freqs); %% store history fValHist(i_iter) = fval/fValIni; %#ok<AGROW> MHist(i_iter+1,:) = reshape(M, [1, numel(M)] ); %#ok<AGROW> %% deciding whether to pursue or not ME (=bootstrap) iterations if strcmpi( weightingMethod, 'pzmodel') display('One iteration for Pzmodel weighting only') break elseif strcmpi( weightingMethod, 'ao') display('One iteration for ao weighting only') break elseif norm(fValHist(i_iter)-1) < normCriterion display(['Iterations stopped at iteration ' num2str(i_iter) ' because criterion did not make enough progress (see parameter "normCriterion")']) break elseif i_iter == iterMax display(['Iterations stopped at maximum number of iterations ' num2str(i_iter) ' (see parameter "iterMax")']) break elseif norm(MHist(i_iter+1,:)-MHist(i_iter,:))<normCoefs display(['Iterations stopped at iteration ' num2str(i_iter) ' because parameters did not make enough progress (see parameter "normCoefs")']) break end end % ending loop over MAX/EXP iterations %% creating output plist plOut = plist; p = param({ 'criterion' , 'last value of the criterion in the last optimization'}, fval ); plOut.append(p); p = param({ 'M' , 'Best fitting value'}, (M + trendCorrection(optData.gapsPos).') * optData.yNorm ); plOut.append(p); %% creating output aos for weights aoP = ao( fsdata(freqsAvg, pAvg * (optData.yNorm^2 * optData.Ts / optData.nData) ) ); aoP.setName('final weight'); aoP.setXunits('Hz'); aoP.setYunits(aos.yunits^2 * unit('Hz^-1')); aoP.setDescription(['final weight for gap-filling after ' num2str(i_iter) ' iterations (identical to )']); aoP.setT0(aos.t0); aoPini = ao( fsdata(freqsAvg, Pini * (optData.yNorm^2 * optData.Ts / optData.nData) ) ); aoPini.setName('initial weight'); aoPini.setXunits('Hz'); aoPini.setYunits(aos.yunits^2 * unit('Hz^-1')); aoPini.setDescription(['initial weight for gap-filling']); aoPini.setT0(aos.t0); %% creating filled output aoGapsFilled = ao( plist('yvals', ( trendCorrection + substitution( optData.y, M, optData.gapsPos)) * optData.yNorm, 'fs', 1/optData.Ts, 'type', 'tsdata' )); aoGapsFilled.setName('filled time-series'); aoGapsFilled.setXunits('s'); aoGapsFilled.setYunits(aos.yunits); aoGapsFilled.setDescription(['Filled time-series using the criteiron: ' optData.criterion ]); aoGapsFilled.setT0(aos.t0); aoGapsFilled.addHistory( getInfo('None'), pl , ao_invars, aos.hist ); %% creating output windows aoWindow = ao( plist('yvals', optData.win, 'fs', 1/optData.Ts, 'type', 'tsdata' )); aoWindow.setName('initial window used to evaluate the spectrum'); aoWindow.setXunits('s'); aoWindow.setT0(aos.t0); aoWindow.addHistory( getInfo('None'), pl , ao_invars, aos.hist ); if strcmpi(optData.criterion,'FTest-NoHfWin') aoWindowShift = ao( plist('yvals', optData.lfWin, 'fs', 1/optData.Ts, 'type', 'tsdata' )); else aoWindowShift = ao( plist('yvals', optData.winsShift(:, 1) , 'fs', 1/optData.Ts, 'type', 'tsdata' )); end aoWindowShift.setName('window used to optimize the spectrum'); aoWindowShift.setXunits('s'); aoWindowShift.setDescription(['one of the ' num2str(optData.nShifts) ' windows involved in the criterion']); aoWindowShift.setT0(aos.t0); aoWindowShift.addHistory( getInfo('None'), pl , ao_invars, aos.hist ); %% assigning output varargout = {aoGapsFilled, plOut, aoP, aoPini, aoWindow, aoWindowShift}; %% clearing optData from global workspace clear global optData end %% usefull function to compute the weights from the residual function [powAvgs, freqsAvg, powStd, sumMat, nFreqsAvg] = computeWeight(Y, M, gapsPos, freqs) global optData yFilled = substitution( Y, M, gapsPos); if strcmpi(optData.criterion,'FTest-NoHfWin') win = optData.lfWin; else win = optData.win; end errDft = fft( yFilled .* win, optData.nData); errDft = errDft(optData.keepFreqs); % removing aliased frequencies pow = imag(errDft).^2 + real(errDft).^2; % power [freqsAvg, powAvgs, nFreqsAvg, nDofs, sumMat] = ltpda_spsd(freqs, pow, optData.linCoef, optData.logCoef); powStd = powAvgs./sqrt(nDofs); end %% optimal criterion function j = optimalCriterion(M) global optData j = 0; yFilled = substitution(optData.y, M, optData.gapsPos); if strcmpi(optData.criterion, 'FTest-NoHfWin') errDft = fft( yFilled .* optData.lfWin, optData.nData); % FFT algirthm gets DFT, only a LF window is used here errDft = errDft(optData.keepFreqs); % keeping positive frequencies pow = imag(errDft).^2 + real(errDft).^2; % PSD of signal powSum = optData.sumMat * pow; % binning frequencies as in sPSD j = sum( powSum .* optData.powInv ); % summing FTest elseif strcmpi(optData.criterion, 'FTest') for iiWin=1:numel(optData.nShifts) for iiDirection = [0 1] % positive/negative window shift errDft = fft( yFilled .* optData.winsShift(:, 2*iiWin-1+iiDirection), optData.nData); % FFT algirthm gets DFT errDft = errDft(optData.keepFreqs); % keeping positive frequencies pow = imag(errDft).^2 + real(errDft).^2; % PSD of signal powSum = optData.sumMat * pow; % binning frequencies as in sPSD j = j + sum( powSum .* optData.powInv ) * optData.shiftCounts(iiWin); end end elseif strcmpi(optData.criterion, 'Chi2') for iiWin=1:numel(optData.nShifts) for iiDirection = [0 1] % positive/negative window shift errDft = fft( yFilled .* optData.winsShift(:, 2*iiWin-1+iiDirection), optData.nData); % FFT algirthm gets DFT errDft = errDft(optData.keepFreqs); % keeping positive frequencies pow = imag(errDft).^2 + real(errDft).^2; % PSD of signal powSum = optData.sumMat * pow; % binning frequencies as in sPSD normlzChi2Sum = (2*powSum) .* optData.powInv; % divide the sum by the expected average of each terms, so the chi2 is normalized logProbaDensities = optData.logProbaDensityFactor + (optData.nFreqsAvg-1).*log(normlzChi2Sum) - normlzChi2Sum/2 ; % here computing log of probability j = j - sum(logProbaDensities); % better than taking product of probabilities end end else error(['criterion badly specified' optData.criterion]) end end %% function subtituting gaps in time-series function Y = substitution( Y, M, gapsPos) Y(gapsPos) = M; end %% Direct solver for "FTest" quadratic criterion function [M, hessian] = solveProblemFTest( gapsPos, powAvgInv, nFreqsAvg) global optData computeDuration = 1.3e-8 * 2 * optData.nShifts * numel(gapsPos)^2 * sum(nFreqsAvg); display(['expected time for linear solver: ' num2str(computeDuration) 's']) gapsPhase = exp( -1i*2*pi * (gapsPos-1)/numel(optData.y) ); % FFT value of a gap sample at base frequency nGaps = numel(gapsPos); % number of gaps nAvgs = numel(nFreqsAvg); % number of frequency bins B = zeros(nGaps,1); A = zeros(nGaps,nGaps); %% frequency weighted criterion for iiWin=1:numel(optData.nShifts) % loop on different shifts for HF window for iiDirection = [0 1] % positive/negative window shift W = optData.winsShift(:, 2*iiWin-1+iiDirection); errDft = fft( optData.y .* W, optData.nData); % FFT algirthm gets DFT errDft = errDft(optData.keepFreqs); % keeping positive frequencies gapsAmplitude = W(gapsPos); % amplitude of gaps once windowed gapsPhaseAtFreq = gapsPhase.^0; % FTF at fundamental : it is only the mean value iiFreq = 0; % frequency (before averaging with binning) for iiFreqAvg = 1:nAvgs % loop on frequency bins BLocal = zeros(nGaps,1); ALocal = zeros(nGaps,nGaps); for iiFreqInAvg = 1:nFreqsAvg(iiFreqAvg) % loop on frequencies inside frequency bin iiFreq = iiFreq + 1; % current frequency index (starting with 1!) gapDFT = reshape( gapsAmplitude .* gapsPhaseAtFreq , [nGaps,1]); % DFT of each windowed gap data at the frequency number iiFreq-1 % gapDFT = reshape( gapsAmplitude .* gapsPhase.^(iiFreq-1) , [nGaps,1]); % DFT of each windowed gap data at the frequency number iiFreq-1 gapsPhaseAtFreq = gapsPhaseAtFreq .* gapsPhase; % updating phase for future DFT samples at next frequency BLocal = BLocal + 2 * real( gapDFT * conj(errDft(iiFreq)) ); ALocal = ALocal + 2 * real( gapDFT * gapDFT' ); end B = B + BLocal * powAvgInv(iiFreqAvg); A = A + ALocal * powAvgInv(iiFreqAvg); end end end M = (-pinv(A)*B) .'; % solving least-square problem A*M+B=0 hessian = A; % this is also the hessian of my criterion end %% Direct solver for "FTest" quadratic criterion with no windowing on each gap function [M, hessian] = solveProblemFTestNoHFWin( gapsPos, powAvgInv, nFreqsAvg) global optData computeDuration = 1.3e-8 * numel(gapsPos)^2 * sum(nFreqsAvg); display(['expected time for linear solver: ' num2str(computeDuration) 's']) gapsPhase = exp( -1i*2*pi * (gapsPos-1)/numel(optData.y) ); % FFT value of a gap sample at base frequency nGaps = numel(gapsPos); % number of gaps nAvgs = numel(nFreqsAvg); % number of frequency bins B = zeros(nGaps,1); A = zeros(nGaps,nGaps); %% frequency weighted criterion if strcmpi(optData.criterion, 'FTest-NoHfWin') % retrieving corresponding window W = optData.lfWin; else W = optData.winsShift(:, 2*iiWin-1+iiDirection); end errDft = fft( optData.y .* W, optData.nData); % FFT algirthm gets DFT errDft = errDft(optData.keepFreqs); % keeping positive frequencies gapsAmplitude = W(gapsPos); % amplitude of gaps once windowed gapsPhaseAtFreq = gapsPhase.^0; % FTF at fundamental : it is only the mean value iiFreq = 0; % frequency (before averaging with binning) for iiFreqAvg = 1:nAvgs % loop on frequency bins BLocal = zeros(nGaps,1); ALocal = zeros(nGaps,nGaps); for iiFreqInAvg = 1:nFreqsAvg(iiFreqAvg) % loop on frequencies inside frequency bin iiFreq = iiFreq + 1; % current frequency index (starting with 1!) gapDFT = reshape( gapsAmplitude .* gapsPhaseAtFreq , [nGaps,1]); % DFT of each windowed gap data at the frequency number iiFreq-1 % gapDFT = reshape( gapsAmplitude .* gapsPhase.^(iiFreq-1) , [nGaps,1]); % DFT of each windowed gap data at the frequency number iiFreq-1 gapsPhaseAtFreq = gapsPhaseAtFreq .* gapsPhase; % updating phase for future DFT samples at next frequency BLocal = BLocal + 2 * real( gapDFT * conj(errDft(iiFreq)) ); ALocal = ALocal + 2 * real( gapDFT * gapDFT' ); end B = B + BLocal * powAvgInv(iiFreqAvg); A = A + ALocal * powAvgInv(iiFreqAvg); end M = (-pinv(A)*B) .'; % solving least-square problem A*M+B=0 hessian = A; % this is also the hessian of my criterion end %% function computing the high-frequency window and all its shifted components function [shiftVals, shiftCounts, winHF, winsHfShift] = makeHFWindows(ndata, gapsPos) gapsPos = [1; gapsPos; ndata]; diffGapsPos = diff(gapsPos); % distance between consecutive gaps %% detecting segments and corresponding lengths beginSegments = gapsPos([diffGapsPos>1; false])+1; endSegments = gapsPos([false; diffGapsPos>1])-1; segmentsLength = endSegments-beginSegments+1; %% statitstics on segment (half) length timeShifts = floor(segmentsLength/2); % windows will be shifted by +/- half a segment [shiftCounts, shiftVals] = hist(timeShifts, 1:ndata); shiftVals = shiftVals(shiftCounts>0); shiftCounts = shiftCounts(shiftCounts>0); %% making main window winHF = zeros(ndata,1); for iiSegment=1:numel(segmentsLength) % a window for each segment phaseLocal = linspace(0, 2*pi, segmentsLength(iiSegment)+2).'; % building phase vector winLocal = 0.5 * (1 - cos(phaseLocal)); % making window winHF(beginSegments(iiSegment):endSegments(iiSegment)) = winLocal( 2:end-1 ); % assigning window to corresponding segment end %% making all time-shifted windows winsHfShift = zeros( ndata, 2*numel(shiftVals) ); for iiShift=1:numel(shiftVals) winsHfShift(:, 2*iiShift-1) = circshift(winHF, shiftVals(iiShift)).'; winsHfShift(:, 2*iiShift) = circshift(winHF, -shiftVals(iiShift)).'; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pls = []; else sets = {'Default'}; pls = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: gapfillingoptim.m,v 1.27 2011/06/11 14:11:27 adrien Exp $', sets, pls); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % isgap p = param({'isgap', ['Logical ao giving position of gaps. If not<br>'... 'specified, gaps are positionned where there are zeros.']}, {1, {'zeros', ao}, paramValue.SINGLE}); pl.append(p); % large scale or small scale algorithm? p = param({'scale', 'large scale or small scale algorithm'}, {1, {'large scale', 'small scale'}, paramValue.SINGLE}); pl.append(p); % initial coefficients for subtraction initialization p = param({ 'coefs' , 'initial subtracted coefficients, must be a nY*nU double array. If not provided zeros are assumed'}, [] ); pl.append(p); % weighting scheme p = param({ 'weightingMethod' , 'choose to define a frequency weighting scheme'}, {1, {'residual', 'ao', 'pzmodel'}, paramValue.SINGLE} ); pl.append(p); p = param({ 'aoWeight' , 'ao to define a frequency weighting scheme (if chosen in ''weightingMethod'')'}, ao.initObjectWithSize(0,0) ); pl.append(p); p = param({ 'pzmodelWeight' , 'pzmodel to define a frequency weighting scheme (if chosen in ''weightingMethod'')'}, pzmodel.initObjectWithSize(0,0) ); pl.append(p); p = param({ 'lincoef' , 'linear coefficient for scaling frequencies in chi2'}, 20 ); pl.append(p); p = param({ 'logcoef' , 'logarithmic coefficient for scaling frequencies in chi2'}, 0.0 ); pl.append(p); p = param({'fitCriterion' , 'criterion to fit the amplitude spectra (increasing quality, increasing time)'}, {2, {'FTest-NoHfWin' 'FTest' 'chi2'}, paramValue.SINGLE}); pl.append(p); % iterations convergence stop criterion p = param({ 'iterMax' , 'max number of Mex/Exp iterations (only makes sense for "FTest-NoHfWin" fitting criteiron)'}, 1 ); pl.append(p); p = param({ 'normCoefs' , 'tolerance on inf norm of coefficient update '}, 1e-12 ); pl.append(p); p = param({ 'normCriterion' , 'tolerance on norm of criterion variation'}, 1e-5 ); pl.append(p); % windowing options p = param({ 'win' , 'window to operate FFT, may be a plist/ao'}, plist('win', 'levelledHanning', 'PSLL', 200, 'levelOrder', 2 ) ); pl.append(p); % display p = param({ 'display' , 'choose how much to display of the optimizer output'}, {1, {'off', 'iter', 'final'}, paramValue.SINGLE} ); pl.append(p); % optimizer options p = param({ 'maxcall' , 'maximum number of calls to the criterion function'}, 50000 ); pl.append(p); end