% SPSD implements the smoothed (binned) PSD algorithm for analysis objects.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DESCRIPTION: SPSD implements the smoothed PSD algorithm for analysis objects.%% CALL: bs = spsd(a1,a2,a3,...,pl)% bs = spsd(as,pl)% bs = as.spsd(pl)%% INPUTS: aN - input analysis objects% as - input analysis objects array% pl - input parameter list%% OUTPUTS: bs - array of analysis objects, one for each input%% <a href="matlab:utils.helper.displayMethodInfo('ao', 'spsd')">Parameters Description</a>%% VERSION: $Id: spsd.m,v 1.21 2011/07/11 10:43:35 adrien Exp $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function varargout = spsd(varargin) import utils.const.* % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [as, ao_invars, rest] = utils.helper.collect_objects(varargin(:), 'ao', in_names); [pl, pl_invars, rest] = utils.helper.collect_objects(rest(:), 'plist', in_names); % Decide on a deep copy or a modify bs = copy(as, nargout); % Combine plists pl = combine(pl, plist(rest(:)), getDefaultPlist); inhists = []; %% Go through each input AO for jj = 1 : numel(bs) % gather the input history objects inhists = [inhists bs(jj).hist]; %#ok<AGROW> % check this is a time-series object if ~isa(bs(jj).data, 'tsdata') warning('!!! spsd requires tsdata (time-series) inputs. Skipping AO %s', ao_invars{jj}); %#ok<WNTAG> else % Check the time range. time_range = find(pl, 'times'); if ~isempty(time_range) bs(jj) = split(bs(jj), plist('method', 'times', 'times', time_range)); end % Check the length of the object if bs(jj).len <= 0 error('### The object is empty! Please revise your settings ...'); end % pl = utils.helper.process_spectral_options(pl, 'log'); pl = pl.combine(getDefaultPlist()); % getting data y = bs(jj).y; % Window function Win = find(pl, 'Win'); nfft = length(y); Win = ao( combine(plist('win', Win , 'length', nfft), pl) ); % detrend order = find(pl,'order'); if ~(order < 0) y = ltpda_polyreg(y, order).'; else y = reshape(y, 1, nfft); end % computing PSD window = Win.data.y; window = window/norm(window)*sqrt(nfft); yASD = real(fft(y.*window, nfft)).^2 + imag(fft(y.*window, nfft)).^2; pow = [yASD(1) yASD(2:floor(nfft/2))*2]; pow = pow / ( bs(jj).data.fs * nfft); Freqs = linspace(0, bs(jj).data.fs/2, nfft/2); % smoothing PSD if ~isempty(find(pl,'frequencies')) error('the option "frequencies" is deprecated, frequencies are "removed" by default') end [Freqs, pow, nFreqs, nDofs] = ltpda_spsd(Freqs, pow, find(pl,'linCoef'), find(pl,'logCoef') ); % create new output fsdata scale = find(pl, 'Scale'); switch lower(scale) case 'asd' fsd = fsdata(Freqs, sqrt(pow), bs(jj).data.fs); fsd.setYunits(bs(jj).data.yunits / unit('Hz^0.5')); % stdDev = 0.5 * sqrt( pow ./ nDofs ); % linear approximation of the sqrt of a distribution % approximation knowing the STD of the PSD % STD assuming amplitude samples are independent, Chi^1_2 distibuted % (with both variables of powe expectancy pow/2), and of different % magnitude stdDev = 2 * sqrt(pow./nDofs) .* ( nDofs - 2*exp( 2*(gammaln((nDofs+1)/2)-gammaln(nDofs/2)) ) ); % std of the chi_2N^1 case 'psd' fsd = fsdata(Freqs, pow, bs(jj).data.fs); fsd.setYunits(bs(jj).data.yunits.^2/unit('Hz')); % STD assuming power samples are independent, Chi^2_2 distibuted % (with both variables of expectancy pow/2), and of different % magnitude stdDev = sqrt(2) * (pow./nDofs) .* sqrt(2*nDofs); % std of the chi_2N^2 otherwise error(['### Unknown scaling:' scale]); end fsd.setXunits('Hz'); fsd.setDx(nFreqs*Freqs(2)/2); fsd.setEnbw(1);% WARNING HERE!!! fsd.setT0(bs(jj).data.t0); % make output analysis object bs(jj).data = fsd; % set name bs(jj).name = ['SPSD(', ao_invars{jj}, ') ' upper(scale)]; % Add standard deviation bs(jj).data.dy = stdDev; % Add history bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), inhists(jj)); end % End tsdata if/else end % End AO loop %% Set output if nargout == numel(bs) % List of outputs for ii = 1:numel(bs) varargout{ii} = bs(ii); end else % Single output varargout{1} = bs; endend%--------------------------------------------------------------------------% Get Info Object%--------------------------------------------------------------------------function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: spsd.m,v 1.21 2011/07/11 10:43:35 adrien Exp $', sets, pl);end%--------------------------------------------------------------------------% Get Default Plist%--------------------------------------------------------------------------function pl = getDefaultPlist() % Plist for Welch-based, log-scale spaced spectral estimators. pl = plist; % Win p = param({'Win',['the window to be applied to the data to remove the ', ... 'discontinuities at edges of segments. [default: taken from user prefs] <br>', ... 'Only the design parameters of the window object are used. Enter either: <ul>', ... '<li> a specwin window object OR</li>', ... '<li> a string value containing the window name</li></ul>', ... 'e.g., <tt>plist(''Win'', ''Kaiser'', ''psll'', 200)</tt>']}, paramValue.WINDOW); pl.append(p); % Psll p = param({'Psll',['the peak sidelobe level for Kaiser windows.<br>', ... 'Note: it is ignored for all other windows']}, paramValue.DOUBLE_VALUE(200)); pl.append(p); % Psll p = param({'levelOrder','the contracting order for levelledHanning window'}, paramValue.DOUBLE_VALUE(2)); pl.append(p); % Order p = param({'Order',['order of segment detrending:<ul>', ... '<li>-1 - no detrending</li>', ... '<li>0 - subtract mean</li>', ... '<li>1 - subtract linear fit</li>', ... '<li>N - subtract fit of polynomial, order N</li></ul>']}, paramValue.DETREND_ORDER); p.val.setValIndex(2); pl.append(p); % Times p = param({'Times','time range. If not empty, sets the restricted interval to analyze'}, paramValue.DOUBLE_VALUE([])); pl.append(p); % Scale p = param({'Scale',['scaling of output. Choose from:<ul>', ... '<li>PSD - Power Spectral Density</li>', ... '<li>ASD - Amplitude (linear) Spectral Density</li>'... ]}, {1, {'PSD', 'ASD', 'PS', 'AS'}, paramValue.SINGLE}); pl.append(p); p = param( {'lincoef', 'Linear scale smoothing coefficent (freq. bins)'}, 1); pl.append(p); p = param( {'logcoef', ['Logarithmic scale smoothing coefficent<br>', 'Best compromise for both axes is 2/3']}, 2/3); pl.append(p);end