Mercurial > hg > ltpda
view m-toolbox/test/test_ao_eqmotion.m @ 39:11e3ed9d2115 database-connection-manager
Implement databases listing in database connection dialog
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Test ao/eqmotion for the solution of a torsion pendulum equation of the % motion % % 25-03-2009 L. Ferraioli % CREATION % % $Id: test_ao_eqmotion.m,v 1.1 2009/03/27 12:25:15 luigi Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Generate data % generate signal + white noise a = ao(plist('tsfcn','20.*sin(2.*pi.*t./800)+randn(size(t))','fs',1,'nsecs',1e5,'yunits','rad')); %% Solve equation of Motion for the torsion pendulum % Set pendulum parameters I = 4.31e-5; % Moment of Inertia T0 = 563; % Oscillatory period Q = 2880; % Quality factor Gam = I*(2*pi/T0)^2; % building coefficients AO alpha2 = cdata(I); alpha2.setYunits(unit('kg').*unit('m').^2./unit('rad')); alpha2 = ao(alpha2); alpha1 = cdata(Gam./(2.*pi.*Q./T0)); alpha1.setYunits(unit('kg').*unit('m').^2./unit('rad')./unit('s')); alpha1 = ao(alpha1); alpha0 = cdata(Gam); alpha0.setYunits(unit('kg').*unit('m').^2./unit('rad')./unit('s').^2); alpha0 = ao(alpha0); % Calculate torque output units are defined by the coefficients units pl1 = plist('ALPHA2',alpha2,'ALPHA1',alpha1,'ALPHA0',alpha0); b1 = eqmotion(a,pl1); b1.simplifyYunits; b1.setName; % Alternative torque calculation set the targunits to get appropiate output % units pl2 = plist('ALPHA2',I,'ALPHA1',Gam./(2.*pi.*Q./T0),'ALPHA0',Gam,'TARGETUNITS',unit('kg').*unit('m').^2./unit('s').^2); b2 = eqmotion(a,pl2); b2.simplifyYunits; b2.setName; % plotting iplot(b1,b2) %% Extract TF tf1 = tfe(a,b1,plist('Nfft',1e4)); tf2 = tfe(a,b2,plist('Nfft',1e4)); % Theorethical TF f = logspace(-4,log10(0.5),300); f = f.'; s = 1i.*2.*pi.*f; I = 4.31e-5; T0 = 563; Q = 2880; Gam = I*(2*pi/T0)^2; TF = I.*s.^2 + (Gam./(2.*pi.*Q./T0)).*s + Gam; TF = ao(plist('xvals',f,'yvals',TF,'dtype','fsdata','fs',a.fs)); TF.setYunits(tf1.yunits); TF.setName; % plot iplot(TF,tf1,tf2)