Mercurial > hg > ltpda
view m-toolbox/test/utils/test_loglikehood_ssm_td.m @ 39:11e3ed9d2115 database-connection-manager
Implement databases listing in database connection dialog
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Test loglikehood_ssm_td % % Test with an harmonic hoscillator and simplex parameters search % % L Ferraioli 11-10-2010 % % $Id: test_loglikehood_ssm_td.m,v 1.3 2010/11/26 13:52:32 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% set parameters m = 2; % kg k = 0.1; % kg s^-2 damp = 0.05; % kg s^-1 fAmp = 3; NAmp = 1; fs = 1; cutbefore = 100*fs; cutafter = 500*fs; f = logspace(-5+log10(fs),log10(fs/2),300); %% Load model sys = ssm(plist('built-in', 'HARMONIC_OSC_1D', 'SYMBOLIC PARAMS',{'M', 'K', 'VBETA'})); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',[m k damp])); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); pl = plist('inputs', 'COMMAND.Force', 'HARMONIC_OSC_1D.outputs', 'Position', 'f', f); h = bode(sys,pl); iplot(h) %% input force and readout noise % input force fc = ao(plist('waveform','sine wave','A',fAmp,'f',1e-1,'phi',0,'toff',cutbefore/fs,'nsecs',6e2,'fs',fs)); in = zeropad(fc,plist('Position','post','N',cutafter)); rn = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', in.nsecs)); rn = rn.*NAmp; %% Simulate the system plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force','noise.readout'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in,rn]); out = simulate(sys,plsym); iplot(out,rn) %% Do chisquare parameter search mod = ssm(plist('built-in', 'HARMONIC_OSC_1D',... 'SYMBOLIC PARAMS',{'M', 'K', 'VBETA'})); inNames = {'COMMAND.Force'}; outNames = {'HARMONIC_OSC_1D.position'}; parnames = {'m', 'k', 'vbeta'}; x0 = [1 1 1]; x0 = [2.5 0.08 0.1]; % loglk = % loglikehood_ssm_td(xp,in,out,parnames,model,inNames,outNames,varargin) xp2 = fminsearch(@(x)utils.math.chisquare_ssm_td(x,in,out,parnames,mod,inNames,outNames,'cutbefore',cutbefore,'cutafter',cutafter),x0,optimset('Display','iter')); %% sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',xp2)); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); outfit2 = simulate(sys,plsym); iplot(out,outfit2) iplot(out-outfit2) iplot(out-outfit2-rn) % xp = % % 2.22352087931512 0.588010809495998 0.195689637008003 %% Do parameters search mod = ssm(plist('built-in', 'HARMONIC_OSC_1D',... 'SYMBOLIC PARAMS',{'M', 'K', 'VBETA'})); inNames = {'COMMAND.Force'}; outNames = {'HARMONIC_OSC_1D.position'}; inNoiseNames = {'noise.readout'}; inNoise = rn; outNoiseNames = {'HARMONIC_OSC_1D.position'}; parnames = {'M', 'K', 'VBETA'}; % x0 = xp2; x0 = [2.5 0.08 0.1]; % loglk = % loglikehood_ssm_td(xp,in,out,parnames,model,inNames,outNames,varargin) xp = fminsearch(@(x)utils.math.loglikehood_ssm_td(x,in,out,parnames,mod,inNames,outNames,rn,'cutbefore',cutbefore,'cutafter',cutafter),x0,optimset('Display','iter')); %% sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',xp)); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); outfit = simulate(sys,plsym); iplot(out,outfit) iplot(out-outfit) iplot(out-outfit-rn) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% test covariace estimation mod = ssm(plist('built-in', 'HARMONIC_OSC_1D',... 'SYMBOLIC PARAMS',{'M', 'K', 'VBETA'})); inNames = {'COMMAND.Force'}; outNames = {'HARMONIC_OSC_1D.position'}; parnames = {'m', 'k', 'vbeta'}; sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',[m k damp])); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); modeout = simulate(sys,plsym); % get noise noise = out - modeout; nn = noise.y; % get covariance matrix cmat = utils.math.xCovmat(nn); cmatseq = cmat(1,:); % get covariance sequance [cseq,lags] = xcov(nn,'unbiased'); cseq = ifftshift(cseq); lags=ifftshift(lags); cseqr = cseq(1:numel(cmatseq)); lagsr = lags(1:numel(cmatseq)); lagsr = lagsr.'; % compare results figure plot(lagsr,cmatseq.','k') hold on plot(lagsr,cseqr,'r') figure plot(lagsr,cmatseq.'-cseqr,'k') [R,p] = chol(cmat); d = eig(cmat); % md = min(d); % cmat2 = cmat + abs(md).*eye(size(cmat)); % [R,p] = chol(cmat2); ccmat = fliplr(flipud(cmat)); [RR,pp] = chol(ccmat); %% correlation matrix [corr,sig] = utils.math.cov2corr(cmat); % test positive definiteness [R,p] = chol(corr); % get a valid correlation newcorr = validcorr(corr); %% % get covariance sequance [cseq,lags] = xcov(nn,'unbiased'); Num = numel(nn); for ii=1:Num ccmat(ii,:) = cseq(Num-ii+1:2*Num-ii); end [R,p] = chol(ccmat); %% test the likelihood mod = ssm(plist('built-in', 'HARMONIC_OSC_1D',... 'SYMBOLIC PARAMS',{'M', 'K', 'VBETA'})); inNames = {'COMMAND.Force'}; outNames = {'HARMONIC_OSC_1D.position'}; parnames = {'m', 'k', 'vbeta'}; sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',[m k damp])); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); modeout1 = simulate(sys,plsym); sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',[1 1 1])); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); modeout2 = simulate(sys,plsym); % xp = [1.1 0.6 0.01]; sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',xp)); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); modeout3 = simulate(sys,plsym); % xp2 = [2.22352087931512 0.588010809495998 0.195689637008003]; sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',xp2)); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); modeout4 = simulate(sys,plsym); % get noise noise1 = out - modeout1; % true values noise2 = out - modeout2; % starting guess noise3 = out - modeout3; % fit values noise4 = out - modeout4; % chi2 fit values lik1 = utils.math.loglikehood_td(noise1,'cutbefore',cutbefore,'cutafter',cutafter) lik2 = utils.math.loglikehood_td(noise2,'cutbefore',cutbefore,'cutafter',cutafter) lik3 = utils.math.loglikehood_td(noise3,'cutbefore',cutbefore,'cutafter',cutafter) lik4 = utils.math.loglikehood_td(noise4,'cutbefore',cutbefore,'cutafter',cutafter) %% test a uniform grid mod = ssm(plist('built-in', 'HARMONIC_OSC_1D',... 'SYMBOLIC PARAMS',{'M', 'K', 'VBETA'})); inNames = {'COMMAND.Force'}; outNames = {'HARMONIC_OSC_1D.position'}; parnames = {'m', 'k', 'vbeta'}; mm = [1.8:0.02:2.2]; kc = [0.1:0.02:1]; dd = [0.01:0.02:1]; idx = 1; pars = struct; Ntot = numel(mm)*numel(kc)*numel(dd); lik = zeros(Ntot,1); %% for ii=1:numel(mm) for jj=1:numel(kc) for kk=1:numel(dd) fprintf('step %s of %s\n',num2str(idx),num2str(Ntot)); pars(idx).m = mm(ii); pars(idx).k = kc(jj); pars(idx).damp = dd(kk); sys = copy(mod,1); sys = sys.setParameters(plist('names',{'M', 'K', 'VBETA'},'values',[mm(ii) kc(jj) dd(kk)])); sys.keepParameters(); sys.modifyTimeStep(plist('newtimestep',1/fs)); plsym = plist('AOS VARIABLE NAMES',{'COMMAND.Force'},... 'RETURN OUTPUTS','HARMONIC_OSC_1D.position',... 'AOS',[in]); modeout = simulate(sys,plsym); noise = out - modeout; lik(idx) = utils.math.loglikehood_td(noise,'cutbefore',cutbefore,'cutafter',cutafter); idx = idx +1; end end end