view m-toolbox/classes/@ao/polynomfit.m @ 48:16aa66670d74 database-connection-manager

Fix LTPDA Preferences tooltip
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Tue, 06 Dec 2011 19:07:27 +0100
parents f0afece42f48
children
line wrap: on
line source

% POLYNOMFIT is a polynomial fitting tool
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%  
% DESCRIPTION: POLYNOMFIT is a polynomial fitting tool based on MATLAB's
% lscov function. It solves an equation in the form
%
%     Y = P(1) * X^N(1) + P(2) * X^N(2) + ...
%
% for the fit parameters P. It handles arbitrary powers of the input vector
% and uncertainties on the dependent vector Y and input vectors X. 
% The output is a pest object where the fields are containing:
% Quantity                              % Field
% Fit coefficients                          y
% Uncertainties on the fit parameters
% (given as standard deviations)            dy
% The reduced CHI2 of the fit              chi2
% The covariance matrix                    cov
% The degrees of freedom of the fit        dof
%  
% CALL:       P = polynomfit(X, Y, PL)
%             P = polynomfit(A, PL)
%  
% INPUTS:     Y   - dependent variable
%             X   - input variables
%             A   - data ao whose x and y fields are used in the fit
%             PL  - parameter list
%  
% OUTPUT:     P   - a pest object with M = numel(N) fitting coefficients
%
%
% PARAMETERS:
%    'orders' - polynom orders. Eg [0,1,-2] fits to P0 + P1*x + P2./x.^2
%    'dy'     - uncertainty on the dependent variable
%    'dx'     - uncertainties on the input variable
%    'p0'     - initial guess on the fit parameters used ONLY to propagate
%               uncertainities in the input variable X to the dependent variable Y
%
% <a href="matlab:utils.helper.displayMethodInfo('ao', 'polynomfit')">Parameters Description</a>
%
% VERSION:     $Id: polynomfit.m,v 1.20 2011/04/08 08:56:11 hewitson Exp $
%
% EXAMPLES:
%
% % 1) Fit with one object input
% 
% nsecs = 5;
% fs    = 10;
% n       = [0 1 -2];
% u1 = unit('mV');
% 
% pl1 = plist('nsecs', nsecs, 'fs', fs, ...
%   'tsfcn', sprintf('t.^%d + t.^%d + t.^%d + randn(size(t))', n), ...
%   'xunits', 's', 'yunits', u1);
% a1 = ao(pl1);
% out1 = polynomfit(a1, plist('orders', n, 'dx', 0.1, 'dy', 0.1, 'P0', zeros(size(n))));
%
% % 2) Fit with two objects input
% 
% fs      =  1;
% nsecs   = 10;
% n       = [0 1 -2];
% 
% X = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm', 'name', 'base'));
% N = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm', 'name', 'noise'));
% C = [ao(1, plist('yunits', 'm', 'name', 'C1')) ...
%      ao(4, plist('yunits', 'm/m', 'name', 'C2')) ...
%      ao(2, plist('yunits', 'm/m^(-2)', 'name', 'C3'))];
% Y = C(1) * X.^0 + C(2) * X.^1 + C(3) * X.^(-2) + N;
% Y.simplifyYunits;
% out2 = polynomfit(X, Y, plist('orders', n))
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function varargout = polynomfit(varargin)
  
  % check if this is a call for parameters
  if utils.helper.isinfocall(varargin{:})
    varargout{1} = getInfo(varargin{3});
    return
  end
 
  % tell the system we are runing
  import utils.const.*
  utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename);

  % collect input variable names
  in_names = cell(size(varargin));
  for ii = 1:nargin,in_names{ii} = inputname(ii);end
  
  % collect all AOs and plists
  [aos, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names);
  pli              = utils.helper.collect_objects(varargin(:), 'plist', in_names);
  
  if nargout == 0
    error('### polynomfit can not be used as a modifier method. Please give at least one output');
  end
  
  % combine plists, making sure the user input is not empty
  pli = combine(pli, plist());
  pl = parse(pli, getDefaultPlist());

  % extract arguments
  if (length(aos) == 1)
    % we are using x and y fields of the single ao we have
    x = aos(1).x;
    dx = aos(1).dx;
    y = aos(1).y;
    dy = aos(1).dy;
    xunits = aos(1).xunits;
    yunits = aos(1).yunits;
    argsname = aos(1).name;
  elseif (length(aos) == 2)
    % we are using y fields of the two aos we have
    x = aos(1).y;
    dx = aos(1).dy;
    y = aos(2).y;
    dy = aos(2).dy;
    xunits = aos(1).yunits;
    yunits = aos(2).yunits;
    argsname = [aos(1).name ',' aos(2).name];
  else
    error('### polynomfit needs one or two input AOs');
  end
  
  % extract plist parameters. For dx and dy we check the user input plist before  
  dy = find(pli, 'dy', dy);
  dx = find(pli, 'dx', dx);
  n  = find(pl, 'orders');
  p0 = find(pl, 'p0');
  
  % vectors length
  N = length(y);
  
  % number of parameters
  num_params = length(n);
  
  % uncertainty on Y  
  if isempty(dy)
    dy = 1;    
  end
  if isa(dy, 'ao')
    % check units
    if yunits ~= dy.data.yunits
      error('### Y and DY units are not compatible - %s %s', char(yunits), char(dy.data.yunits));
    end
    % extract values from AO
    dy = dy.y;
  end
  if isscalar(dy)
    % given a single value construct a vector
    dy = ones(N, 1) * dy;
  end
  
  % weights
  sigma2 = dy.^2;
  
  % extract values for initial guess
  if (isa(p0, 'ao') || isa(p0, 'pest'))
    p0 = p0.y;
  end

  % uncertainty on X
  if ~isempty(dx)    
    
    if length(p0) ~= num_params
      error('### initial parameters guess p0 is mandatory for proper handling of X uncertainties');
    end
    
    if isa(dx, 'ao')
      % check units
      if xunits ~= dx.data.yunits
        error('### X and DX units are not compatible - %s %s', char(xunits), char(dx.data.yunits));
      end
      % extract values from AO
      dx = dx.y;
    end
    if isscalar(dx)
      % given a single value construct a vector
      dx = ones(N, 1) * dx;
    end

    % propagate X uncertainty on Y
    dy_dx_mod = zeros(N, 1);
    for k = 1:num_params
      dy_dx_mod = dy_dx_mod + n(k) * p0(k) * x.^(n(k)-1);
    end
    sigma2x = dy_dx_mod.^2 .* dx.^2;
    
    % add contribution to weights
    sigma2 = sigma2 + sigma2x;
  
  end
      
  % construct matrix with desired powers of X
  m = zeros(length(x), num_params);
  for k = 1:num_params
    m(:,k) = x .^ n(k);
  end

  % check for the presence of 1/0 terms
  M = [];
  X = [];
  Y = [];
  S = [];
  kk = 0;
  
  idx = isfinite(m);
  for jj = 1:size(m,1)
    if all(idx(jj,:))
      kk = kk + 1; 
      M(kk,:) = m(jj,:);
      X(kk) = x(jj);
      Y(kk) = y(jj);
      S(kk,:) = sigma2(jj,:);
    end
  end
  m = M; clear M;
  x = X'; clear X;
  y = Y'; clear Y;
  sigma2 = S; clear S;
  N = kk;
  
  % solve
  [p, stdp, mse, s] = lscov(m, y, 1./sigma2);

  % scale errors
  stdp = stdp ./ sqrt(mse);
  s    = s ./ (mse);

  % compute chi2
  dof = N - length(p);
  chi2 = sum((y - polynomeval(x, n, p)).^2 ./ sigma2) / dof;

  % prepare model, units, names
  model = [];
  for kk = 1:length(p)
    if kk == 1      
      model = [model 'P' num2str(kk) '*X.^(' num2str(n(kk)) ')'];
    else      
      model = [model ' + P' num2str(kk) '*X.^(' num2str(n(kk)) ')'];
    end
    units(kk) = simplify(yunits/xunits.^(n(kk))); 
    names{kk} = ['P' num2str(kk)];
  end
  model = smodel(plist('expression', model, ...
    'params', names, ...
    'values', p, ...
    'xvar', 'X', ...
    'xunits', xunits, ...
    'yunits', yunits ...
    ));
  
  
  % Build the output pest object
  out = pest;
  out.setY(p);
  out.setDy(stdp);
  out.setCov(s);
  out.setChi2(chi2);
  out.setDof(dof);
  out.setNames(names{:});
  out.setYunits(units);
  out.setModels(model);
  out.name = sprintf('polynomfit(%s)', argsname);
  out.addHistory(getInfo('None'), pl,  ao_invars, [aos(:).hist]);
  % Set procinfo object
  out.procinfo = plist('MSE', mse);
  
  % set outputs
  varargout{1} = out;
  
end

% computes polynomial combination
function out = polynomeval(x, n, p)
  assert(length(p) == length(n));
  out = zeros(size(x, 1), 1);
  for k = 1:length(n)
    out = out + p(k) * x.^n(k);
  end
end

% get info object
function ii = getInfo(varargin)
  if nargin == 1 && strcmpi(varargin{1}, 'None')
    sets = {};
    pl   = [];
  else
    sets = {'Default'};
    pl   = getDefaultPlist();
  end
  % build info object
  ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.op, '$Id: polynomfit.m,v 1.20 2011/04/08 08:56:11 hewitson Exp $', sets, pl);
  ii.setModifier(false);
  ii.setArgsmin(1);
end

% get default plist
function plout = getDefaultPlist()
  persistent pl;  
  if ~exist('pl', 'var') || isempty(pl)
    pl = buildplist();
  end
  plout = pl;  
end

function pl = buildplist()
  pl = plist();
  
  % orders
  p = param({'orders', 'Polynom orders.'}, [0]);
  pl.append(p);
  
  % default plist for linear fitting
  pl.append(plist.LINEAR_FIT_PLIST);
  
end