Mercurial > hg > ltpda
view m-toolbox/classes/@matrix/dispersion.m @ 48:16aa66670d74 database-connection-manager
Fix LTPDA Preferences tooltip
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 19:07:27 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% DISPERSION computes the dispersion function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: DISPERSION computes the dispersion function % % CALL: bs = dipersion(in,pl) % % INPUTS: in - matrix objects with input signals to the system % model - symbolic models containing the transfer function model % % pl - parameter list % % OUTPUTS: bs - dispersion function AO % % <a href="matlab:utils.helper.displayMethodInfo('matrix', 'dispersion')">Parameters Description</a> % % VERSION: $Id: dispersion.m,v 1.1 2011/06/22 09:54:19 miquel Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = dispersion(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Method can not be used as a modifier if nargout == 0 error('### crb cannot be used as a modifier. Please give an output variable.'); end % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs smodels and plists [mtxs, mtxs_invars] = utils.helper.collect_objects(varargin(:), 'matrix', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Combine plists pl = parse(pl, getDefaultPlist); % get params params = find(pl,'FitParams'); numparams = find(pl,'paramsValues'); mmdl = find(pl,'model'); channel = find(pl,'channel'); mtxns = find(pl,'noise'); outModel = find(pl,'outModel'); bmdl = find(pl,'built-in'); f1 = find(pl,'f1'); f2 = find(pl,'f2'); pseudoinv = find(pl,'pinv'); tol = find(pl,'tol'); outNames = find(pl,'outNames'); inNames = find(pl,'inNames'); % Decide on a deep copy or a modify fin = copy(mtxs, nargout); n = copy(mtxns, nargout); mdl = copy(mmdl,1); % Get number of experiments nexp = numel(fin); % fft % fin = fft(in); % N should get before spliting, in order to convert correctly from psd to % fft N = length(fin(1).getObjectAtIndex(1).x); % Get rid of fft f =0, reduce frequency range if needed if ~isempty(f1) && ~isempty(f2) fin = split(fin,plist('frequencies',[f1 f2])); end FMall = zeros(numel(params),numel(params)); % loop over experiments for k = 1:nexp utils.helper.msg(msg.IMPORTANT, sprintf('Analysis of experiment #%d',k), mfilename('class'), mfilename); % if (((numel(n(1).objs)) == 2) && (numel(fin(1).objs) == 2)) % use signal fft to get frequency vector. Take into account signal % could be empty or set to zero % 1st channel if all(fin(k).getObjectAtIndex(1,1).y == 0) || isempty(fin(k).getObjectAtIndex(1,1).y) i1 = ao(plist('type','fsdata','xvals',0,'yvals',0)); else i1 = fin(k).getObjectAtIndex(1,1); freqs = i1.x; end % 2nd channel if all(fin(k).getObjectAtIndex(2,1).y == 0) || isempty(fin(k).getObjectAtIndex(2,1).y) i2 = ao(plist('type','fsdata','xvals',0,'yvals',0)); else i2 = fin(k).getObjectAtIndex(2,1); freqs = i2.x; end % Compute psd n1 = lpsd(n(k).getObjectAtIndex(1,1)); n2 = lpsd(n(k).getObjectAtIndex(2,1)); n12 = lcpsd(n(k).getObjectAtIndex(1,1),n(k).getObjectAtIndex(2,1)); % interpolate to given frequencies % noise S11 = interp(n1,plist('vertices',freqs)); S12 = interp(n12,plist('vertices',freqs)); S22 = interp(n2,plist('vertices',freqs)); S21 = conj(S12); % get some parameters used below fs = S11.fs; % if (isempty(outModel)) % if ~isempty(bmdl) % compute built-in smodels % for i = 1:4 % if strcmp(bmdl{i},'0'); % h(i) = smodel('0'); % h(i).setXvar('f'); % h(i).setXvals(freqs); % h(i).setParams(params,numparams); % else % h(i) = smodel(plist('built-in',bmdl{i},'f',freqs)); % % set all params to all models. It is not true but harmless % for ii = 1:numel(params) % vecparams(ii) = {numparams(ii)*ones(size(freqs))}; % end % h(i).setParams(params,vecparams); % end % end % elseif ~isempty(mdl) && all(strcmp(class(mdl),'matrix')) for i = 1:numel(mdl.objs) % set Xvals h(i) = mdl.getObjectAtIndex(i).setXvals(freqs); % set alias h(i).assignalias(mdl.objs(i),plist('xvals',freqs)); % set paramaters h(i).setParams(params,numparams); end % differentiate and eval for i = 1:length(params) utils.helper.msg(msg.IMPORTANT, sprintf('computing symbolic differentiation with respect %s',params{i}), mfilename('class'), mfilename); % differentiate symbolically dH11 = diff(h(1),params{i}); dH12 = diff(h(3),params{i}); % taking into account matrix index convention h(2) > H(2,1) dH21 = diff(h(2),params{i}); dH22 = diff(h(4),params{i}); % evaluate d11(i) = eval(dH11,plist('output type','fsdata','output x',freqs)); d12(i) = eval(dH12,plist('output type','fsdata','output x',freqs)); d21(i) = eval(dH21,plist('output type','fsdata','output x',freqs)); d22(i) = eval(dH22,plist('output type','fsdata','output x',freqs)); end % elseif ~isempty(mdl) && all(strcmp(class(mdl),'ssm')) % % meval = copy(mdl,1); % % set parameter values % meval.doSetParameters(params, numparams); % % % make numeric % % meval.doSubsParameters(params, true); % % % get the differentiation step % step = find(pl,'diffStep'); % if isempty(step) % error('### Please input a step for the numerical differentiation') % end % % % differentiate and eval % for i = 1:length(params) % utils.helper.msg(msg.IMPORTANT, sprintf('computing numerical differentiation with respect %s, Step:%4.2d ',params{i},step(i)), mfilename('class'), mfilename); % % differentiate numerically % dH = meval.parameterDiff(plist('names', params(i),'values',step(i))); % % create plist with correct outNames (since parameterDiff change them) % out1 = strrep(outNames{1},'.', sprintf('_DIFF_%s.',params{i})); % 2x2 case % out2 =strrep(outNames{2},'.', sprintf('_DIFF_%s.',params{i})); % spl = plist('set', 'for bode', ... % 'outputs', {out1,out2}, ... % 'inputs', inNames, ... % 'reorganize', true,... % 'f', freqs); % % do bode % d = bode(dH, spl); % % assign according matlab's matrix notation: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) % d11(i) = d(1); % d21(i) = d(2); % d12(i) = d(3); % d22(i) = d(4); % end % % else % error('### please introduce models for the transfer functions') % end % elseif (~isempty(outModel)) % % % if(~isempty(outModel)) % for lll=1:size(outModel,1) % for kkk=1:size(outModel,2) % outModel(lll,kkk) = split(outModel(lll,kkk),plist('frequencies',[f1 f2])); % end % end % %end % % % Avoid numerical differentiation (faster for the magnetic case) % Param{1} = [1 0; % 0 0;]; % Param{2} = [0 0; % 0 1;]; % % for pp = 1:length(params) % for ll = 1:size(outModel,1) % for kk = 1:size(Param{pp},2) % % index convention: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) % tmp = 0; % for innerIndex = 1:size(outModel,2) % tmp = tmp + outModel(ll,innerIndex).y * Param{pp}(innerIndex,kk); % end % h{pp}(:,(kk-1)*size(outModel,1) + ll) = tmp; % end % end % % end % % for i = 1:length(params) % d11(i).y = h{i}(:,1); % d21(i).y = h{i}(:,2); % d12(i).y = h{i}(:,3); % d22(i).y = h{i}(:,4); % end % % end % scaling of PSD % PSD = 2/(N*fs) * FFT *conj(FFT) C11 = N*fs/2.*S11.y; C22 = N*fs/2.*S22.y; C12 = N*fs/2.*S12.y; C21 = N*fs/2.*S21.y; % compute elements of inverse cross-spectrum matrix InvS11 = (C22./(C11.*C22 - C12.*C21)); InvS22 = (C11./(C11.*C22 - C12.*C21)); InvS12 = (C21./(C11.*C22 - C12.*C21)); InvS21 = (C12./(C11.*C22 - C12.*C21)); % compute Fisher Matrix for i =1:length(params) for j =1:length(params) v1v1 = conj(d11(i).y.*i1.y + d12(i).y.*i2.y).*(d11(j).y.*i1.y + d12(j).y.*i2.y); v2v2 = conj(d21(i).y.*i1.y + d22(i).y.*i2.y).*(d21(j).y.*i1.y + d22(j).y.*i2.y); v1v2 = conj(d11(i).y.*i1.y + d12(i).y.*i2.y).*(d21(j).y.*i1.y + d22(j).y.*i2.y); v2v1 = conj(d21(i).y.*i1.y + d22(i).y.*i2.y).*(d11(j).y.*i1.y + d12(j).y.*i2.y); FisMat(i,j) = sum(real(InvS11.*v1v1 + InvS22.*v2v2 - InvS12.*v1v2 - InvS21.*v2v1)); end end utils.helper.msg(msg.IMPORTANT, sprintf('rank(FisMat) = %d', rank(FisMat))); for kk = 1:numel(freqs) % create input signal with power at single freq. % depending on input channel p = zeros(1,numel(freqs)); if channel == 1 p(kk) = sum(i1.y); % create aos i1single = ao(plist('Xvals',freqs,'Yvals',p)); i2single = ao(plist('Xvals',freqs,'Yvals',zeros(1,numel(freqs)))); elseif channel == 2 p(kk) = sum(i2.y); % create aos i1single = ao(plist('Xvals',freqs,'Yvals',zeros(1,numel(freqs)))); i2single = ao(plist('Xvals',freqs,'Yvals',p)); else error('### wrong channel') end % compute Fisher Matrix for single frequencies for i =1:length(params) for j =1:length(params) v1v1 = conj(d11(i).y.*i1single.y + d12(i).y.*i2single.y).*(d11(j).y.*i1single.y + d12(j).y.*i2single.y); v2v2 = conj(d21(i).y.*i1single.y + d22(i).y.*i2single.y).*(d21(j).y.*i1single.y + d22(j).y.*i2single.y); v1v2 = conj(d11(i).y.*i1single.y + d12(i).y.*i2single.y).*(d21(j).y.*i1single.y + d22(j).y.*i2single.y); v2v1 = conj(d21(i).y.*i1single.y + d22(i).y.*i2single.y).*(d11(j).y.*i1single.y + d12(j).y.*i2single.y); FisMatsingle(i,j) = sum(real(InvS11.*v1v1 + InvS22.*v2v2 - InvS12.*v1v2 - InvS21.*v2v1)); end end d(kk) = trace(FisMat\FisMatsingle)/numel(i1.x); % had to divide for num. freqs % d(kk) = trace(pinv(FisMat)*FisMatsingle)/numel(i1.x); % had to divide for num. freqs end % % store Fisher Matrix for this run % FM{k} = FisMat; % % adding up % FMall = FMall + FisMat; % elseif ((numel(n(1).objs) == 3) && (numel(in.objs) == 4) && ~isempty(outModel)) % % this is only valid for the magnetic model, where we have 4 inputs % % (corresponding to the 4 conformator waveforms) and 3 outputs % % (corresponding to IFO.x12, IFO.eta1 and IFO.phi1). And there is a % % contribution of an outModel converting the conformator waveforms % % into forces and torques. % % % % For other cases not implemented yet. % % % use signal fft to get frequency vector. Take into account signal % % could be empty or set to zero % % 1st channel % freqs = fin.getObjectAtIndex(1,1).x; % % for ii = 1:numel(n.objs) % for jj = ii:numel(n.objs) % % Compute psd % if (ii==jj) % spec(ii,jj) = psd(n(k).getObjectAtIndex(ii), pl); % S2(ii,jj) = interp(spec(ii,jj),plist('vertices',freqs,'method','linear')); % else % spec(ii,jj) = cpsd(n(k).getObjectAtIndex(ii),n(k).getObjectAtIndex(jj),pl); % S2(ii,jj) = interp(spec(ii,jj),plist('vertices',freqs,'method','linear')); % S2(jj,ii) = conj(S2(ii,jj)); % end % end % end % % S = matrix(S2,plist('shape',[numel(n.objs) numel(n.objs)])); % % % get some parameters used below % fs = S.getObjectAtIndex(1,1).fs; % % % if(~isempty(outModel)) % for lll=1:size(outModel,1) % for kkk=1:size(outModel,2) % outModel(lll,kkk) = split(outModel(lll,kkk),plist('frequencies',[f1 f2])); % end % end % end % % % Avoid numerical differentiation (faster for the magnetic case) % Param{1} = [ 1 0 0 0; % 0 0 0 0; % 0 0 0 0;]; % Param{2} = [ 0 1 0 0; % 0 0 0 0; % 0 0 0 0;]; % Param{3} = [ 0 0 0 0; % 0 0 1 0; % 0 0 0 0;]; % Param{4} = [ 0 0 0 0; % 0 0 0 0; % 0 0 0 1;]; % % % scaling of PSD % % PSD = 2/(N*fs) * FFT *conj(FFT) % for j = 1: numel(S.objs) % % spectra to variance % C(:,j) = (N*fs/2)*S.objs(j).data.getY; % end % % detm = (C(:,1).*C(:,5).*C(:,9) + ... % C(:,2).*C(:,6).*C(:,7) + ... % C(:,3).*C(:,4).*C(:,8) -... % C(:,7).*C(:,5).*C(:,3) -... % C(:,8).*C(:,6).*C(:,1) -... % C(:,9).*C(:,4).*C(:,2)); % % InvS11 = (C(:,5).*C(:,9) - C(:,8).*C(:,6))./detm; % InvS12 = -(C(:,4).*C(:,9) - C(:,7).*C(:,6))./detm; % InvS13 = (C(:,4).*C(:,8) - C(:,7).*C(:,5))./detm; % InvS21 = -(C(:,2).*C(:,9) - C(:,8).*C(:,3))./detm; % InvS22 = (C(:,1).*C(:,9) - C(:,7).*C(:,3))./detm; % InvS23 = -(C(:,1).*C(:,8) - C(:,7).*C(:,2))./detm; % InvS31 = (C(:,2).*C(:,6) - C(:,5).*C(:,3))./detm; % InvS32 = -(C(:,1).*C(:,6) - C(:,4).*C(:,3))./detm; % InvS33 = (C(:,1).*C(:,5) - C(:,4).*C(:,2))./detm; % % for pp = 1:length(params) % for ll = 1:size(outModel,1) % for kk = 1:size(Param{pp},2) % % index convention: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) % tmp = 0; % for innerIndex = 1:size(outModel,2) % tmp = tmp + outModel(ll,innerIndex).y * Param{pp}(innerIndex,kk); % end % h{pp}(:,(kk-1)*size(outModel,1) + ll) = tmp; % end % end % % end % % for kk = 1:numel(in.objs) % inV(:,kk) = fin.objs(kk).data.getY; % end % % % % compute Fisher Matrix % for i =1:length(params) % for j =1:length(params) % % for ll = 1:size(outModel,1) % tmp = 0; % for kk = 1:size(Param{1},2) % tmp = tmp + h{i}(:,(kk-1)*size(outModel,1) + ll).*inV(:,kk); % end % v{i}(:,ll) = tmp; % end % % % for ll = 1:size(outModel,1) % tmp = 0; % for kk = 1:size(Param{1},2) % tmp = tmp + h{j}(:,(kk-1)*size(outModel,1) + ll).*inV(:,kk); % end % v{j}(:,ll) = tmp; % end % % v1v1 = conj(v{i}(:,1)).*v{j}(:,1); % v1v2 = conj(v{i}(:,1)).*v{j}(:,2); % v1v3 = conj(v{i}(:,1)).*v{j}(:,3); % v2v1 = conj(v{i}(:,2)).*v{j}(:,1); % v2v2 = conj(v{i}(:,2)).*v{j}(:,2); % v2v3 = conj(v{i}(:,2)).*v{j}(:,3); % v3v1 = conj(v{i}(:,3)).*v{j}(:,1); % v3v2 = conj(v{i}(:,3)).*v{j}(:,2); % v3v3 = conj(v{i}(:,3)).*v{j}(:,3); % % FisMat(i,j) = sum(real(InvS11.*v1v1 +... % InvS12.*v1v2 +... % InvS13.*v1v3 +... % InvS21.*v2v1 +... % InvS22.*v2v2 +... % InvS23.*v2v3 +... % InvS31.*v3v1 +... % InvS32.*v3v2 +... % InvS33.*v3v3)); % end % end % % store Fisher Matrix for this run % FM{k} = FisMat; % % adding up % FMall = FMall + FisMat; % else % error('Implemented cases: 2 inputs / 2outputs (TN3045 analysis), and 4 inputs / 3 outpus (magnetic complete analysis model. Other cases have not been implemented yet. Sorry for the inconvenience)'); % end % end % inverse is the optimal covariance matrix % if pseudoinv && isempty(tol) % cov = pinv(FMall); % elseif pseudoinv % cov = pinv(FMall,tol); % else % cov = FMall\eye(size(FMall)); % end % create AO out = ao(plist('Xvals',freqs,'Yvals',d,'type','fsdata','fs',fs,'name','')); % spectrum in the procinfo if channel == 1 out.setProcinfo(plist('S11',S11)); elseif channel == 2 out.setProcinfo(plist('S22',S22)); end % Fisher Matrix in the procinfo out.setProcinfo(plist('FisMat',FisMat)); varargout{1} = out; end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pls = []; else sets = {'Default'}; pls = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: dispersion.m,v 1.1 2011/06/22 09:54:19 miquel Exp $', sets, pls); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist.LPSD_PLIST; pset(pl,'Navs',1) p = plist({'f1', 'Initial frequency for the analysis'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'f2', 'Final frequency for the analysis'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'FitParamas', 'Parameters of the model'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'model','An array of matrix models'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'noise','An array of matrices with the cross-spectrum matrices'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'built-in','Symbolic models of the system as a string of built-in models'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'frequencies','Array of start/sop frequencies where the analysis is performed'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'pinv','Use the Penrose-Moore pseudoinverse'}, paramValue.TRUE_FALSE); pl.append(p); p = plist({'tol','Tolerance for the Penrose-Moore pseudoinverse'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'diffStep','Numerical differentiation step for ssm models'}, paramValue.EMPTY_DOUBLE); pl.append(p); end