view m-toolbox/classes/@ssm/PSD.m @ 48:16aa66670d74 database-connection-manager

Fix LTPDA Preferences tooltip
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Tue, 06 Dec 2011 19:07:27 +0100
parents f0afece42f48
children
line wrap: on
line source

% PSD computes the output theoretical CPSD shape with given inputs.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% DESCRIPTION: PSD computes the output theoretical CPSD shape with given inputs.
%              Unlike CPSD, it returns individual contributions and takes
%              input vectors of objects (instead of square matrices)
%
% CALL:        [mat_outSum, mat_out] = PSD(sys, pl)
%
% INPUTS:
%               sys - (array of) ssm object
%
% OUTPUTS:
%              mat_outSummed - contains specified returned aos, noise is
%                              summed over all the specified input noises
%              mat_out       - contains specified returned aos
%
% <a href="matlab:utils.helper.displayMethodInfo('ssm', 'PSD')">Parameters Description</a>
%
% VERSION: $Id: PSD.m,v 1.15 2011/04/17 21:28:05 adrien Exp $
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function varargout = PSD(varargin)
  
  %% starting initial checks
  
  % use the caller is method flag
  callerIsMethod = utils.helper.callerIsMethod;
  
  % Check if this is a call for parameters
  if utils.helper.isinfocall(varargin{:})
    varargout{1} = getInfo(varargin{3});
    return
  end
  
  utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]);
  
  % Collect input variable names
  in_names = cell(size(varargin));
  for ii = 1:nargin,in_names{ii} = inputname(ii);end
  
  % Collect all SSMs and plists
  [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names);
  [pl, invars2, rest]  = utils.helper.collect_objects(rest(:), 'plist');
  if ~isempty(rest)
    pl = combine(pl, plist(rest{:}));
  end
  pl = combine(pl, getDefaultPlist());
  
  %%% Internal call: Only one object + don't look for a plist
  internal = strcmp(varargin{end}, 'internal');
  
  %% begin function body
  
  %% retrieve system infos
  
  if numel(sys)~=1
    error('noisespectrum needs exactly one ssm as an input')
  end
  if ~sys.isnumerical
    error(['error because system ',sys.name,' is not numerical']);
  end
  if ~sys.isStable
    error('input ssm is not stable!')
  end
  if sys.timestep==0
    timestep = 1;
  else
    timestep = sys.timestep;
  end
  if ~internal
    inhist  = sys.hist;
  end
  
  %% modifying system's ordering
  if find(pl, 'reorganize')
    sys = reorganize(sys, pl, 'set', 'for psd', 'internal', 'internal');
  end
  
  %% collecting functions i/o data
  aos_in = find(pl, 'aos');
  PZ_in = find(pl, 'PZmodels');
  cov_in = find(pl, 'variance');
  cpsd_in = find(pl, 'PSD');
  noise_mat = [cov_in ; cpsd_in/(timestep*2)];
  
  %% getting system's i/o sizes
  inputSizes = sys.inputsizes;
  outputSizes = sys.outputsizes; %#ok<NASGU>
  
  Naos_in = inputSizes(1);
  Nnoise = inputSizes(2);
  NPZmodels = inputSizes(3);
  
  %% retrieving frequency vector
  if isempty(Naos_in)==0
    f1 = find(pl,'f1');
    f2 = find(pl,'f2');
    NFreqs = find(pl,'nf');
    if isempty(f1) || isempty(f2)|| isempty(NFreqs)
      error('### Please specify frequency vector a start and stop frequency .');
    else
      freqs = 10.^linspace(log10(f1), log10(f2), NFreqs);
    end
  else
    freqs = aos_in(1).x;
  end
  
  %% checking frequency vector
  for i=2:numel(aos_in)
    if ~isequal(freqs,aos_in(i).x)
      error('there exist different frequency vectors');
    end
  end
  
  %% reshape pzmodels and aos for input cross-spectra
  if numel(PZ_in)==NPZmodels
    PZdata = zeros(NPZmodels,NFreqs);
    for i=1:NPZmodels
      a = resp(PZ_in(i), freqs);
      PZdata(i,:) = reshape(a.y,[1,NFreqs]) ;
    end
  else
    error('Wrong size for field PZ_in')
  end
  
  if numel(aos_in)==Naos_in
    AOdata = zeros(Naos_in,NFreqs);
    for i=1:Naos_in
      AOdata(i,:) = reshape(aos_in(i).y,[1,NFreqs]) ;
    end
  else
    error('Wrong size for field aos_in')
  end
  
  %% SSM Transfer function
  [a, b, c, d, Ts, InputName, StateName, OutputName,...
    inputvarunits, ssvarunits, outputvarunits] = double(sys); %#ok<ASGLU>
  resps    = ssm.doBode(a, b, c, d, 2*pi*freqs, Ts);
  Noutputs = numel(OutputName);
  
  %% power for each frequency with SVD computation
  Result = zeros(Noutputs, Nnoise+Naos_in+NPZmodels, NFreqs);
  
  for ff=1:NFreqs
    for ii = 1:(Nnoise+Naos_in+NPZmodels)
     
      AmpWhiteNoise = zeros(1,Nnoise);
      AmpAO = zeros(1, Naos_in);
      AmpPZ = zeros(1,NPZmodels);
      if ii<Nnoise+1,
         %% contribution from white noise
        if noise_mat(ii)<0
          error('input PSD is not positive!')
        end
        AmpWhiteNoise(ii) = noise_mat(ii)^0.5;
      elseif ii<Nnoise+Naos_in+1
         %% contribution from aos
        i_input2 = ii-Nnoise;
        if AOdata(i_input2,ff)<0
          error('input PSD is not positive!')
        end
        AmpAO(i_input2) = AOdata(i_input2,ff)^0.5;
      else
         %% contribution from PZmodels
        i_input2 = ii-Nnoise-Naos_in;
        if PZdata(i_input2,ff)<0
          error('input PSD is not positive!')
        end
        AmpPZ(i_input2) = PZdata(i_input2,ff)^0.5;
      end
      %% computing CPSD
      Amp = diag([AmpAO; AmpWhiteNoise; AmpPZ]);
      RespLoc = squeeze(resps(:,:,ff));
      noise = RespLoc * Amp * (RespLoc*Amp)';
      Result(:,ii,ff) = diag( real(noise) * (2*timestep) ); % 2 correction added here
    end
  end
  
  %% saving in aos
  if nargout ~= 1;
    ao_out = ao.initObjectWithSize(Noutputs, Nnoise+Naos_in+NPZmodels);
  end
  ao_outSum = ao.initObjectWithSize(Noutputs, 1);
  
  for oo=1:Noutputs
    %% individual inputs
    if nargout ~= 1;
      for ii=1:(Nnoise+Naos_in+NPZmodels)
        ao_out(oo,ii).setData(fsdata(freqs, squeeze(Result(oo,ii,:))));
        ao_out(oo,ii).setName( ['PSD of ' , OutputName{oo} ' due to ' InputName{ii}]);
        ao_out(oo,ii).setXunits('Hz');
        ao_out(oo,ii).setYunits(outputvarunits(oo)^2/unit('Hz'));
        ao_out(oo,ii).setDescription( ['PSD of ' , OutputName{oo} ' due to ' InputName{ii}]);
      end
    end
    
    %% sum of all inputs
    ao_outSum(oo,1).setData(fsdata(freqs, sum(squeeze(Result(oo,:,:)),1) ));
    ao_outSum(oo,1).setName( ['PSD of ' , OutputName{oo} ' due to all contributions']);
    ao_outSum(oo,1).setXunits('Hz');
    ao_outSum(oo,1).setYunits(outputvarunits(oo)^2/unit('Hz'));
    ao_outSum(oo,1).setDescription( ['PSD of ' , OutputName{oo} ' due to all contributions']);
    
  end
  
  %% construct output matrix object
  if nargout ~= 1;
    out = matrix(ao_out);
  end
  outSum = matrix(ao_outSum);
  if callerIsMethod
    % do nothing
  else
    myinfo = getInfo('None');
    if nargout ~= 1;
      out.addHistory(myinfo, pl , ssm_invars(1), inhist );
    end
    outSum.addHistory(myinfo, pl , ssm_invars(1), inhist );
  end
  
  %% Set output depending on nargout
  if nargout == 1;
    varargout = {outSum};
  elseif nargout == 2;
    varargout = {outSum out };
  elseif nargout == 0;
    iplot(ao_outSum, ao_out);
  else
    error('Wrong number of outputs')
  end
end




%--------------------------------------------------------------------------
% Get Info Object
%--------------------------------------------------------------------------
function ii = getInfo(varargin)
  
  if nargin == 1 && strcmpi(varargin{1}, 'None')
    sets = {};
    pl   = [];
  else
    sets = {'Default'};
    pl   = getDefaultPlist;
  end
  % Build info object
  ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: PSD.m,v 1.15 2011/04/17 21:28:05 adrien Exp $', sets, pl);
  
end

%--------------------------------------------------------------------------
% Get Default Plist
%--------------------------------------------------------------------------
function pl = getDefaultPlist()
  pl = ssm.getInfo('reorganize', 'for PSD').plists;
  pl.remove('set');
  
  p = param({'variance', 'The variance vector of this noise between input ports for the <i>time-discrete</i> noise model. '}, []);
  pl.append(p);
  
  p = param({'PSD', 'The one sided psd vector of the white noise between input ports.'}, []);
  pl.append(p);
  
  p = param({'aos', 'A vector of input PSD AOs, The spectrum of this noise between input ports for the <i>time-continuous</i> noise model.'}, ao.initObjectWithSize(1,0));
  pl.append(p);
  
  p = param({'PZmodels', 'vector of noise shape filters for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1)));
  pl.append(p);
  
  p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE);
  pl.append(p);
  
  p = param({'f2', 'The maximum frequency. Default is Nyquist or 1Hz.'}, paramValue.EMPTY_DOUBLE);
  pl.append(p);
  
  p = param({'f1', 'The minimum frequency. Default is f2*1e-5.'}, paramValue.EMPTY_DOUBLE);
  pl.append(p);
  
  p = param({'nf', 'The number of frequency bins. Frequencies are scale logarithmically'}, paramValue.DOUBLE_VALUE(200));
  pl.append(p);
  
end