Mercurial > hg > ltpda
view m-toolbox/classes/@pest/eval.m @ 2:18e956c96a1b database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Matlab code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Sun, 04 Dec 2011 21:23:09 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% EVAL evaluate a pest object %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: EVAL evaluate a pest model. % % CALL: b = eval(p, pl) % b = eval(p, x, pl) % b = eval(p, x1, ... , xN, pl) % b = eval(p, [x1 ... xN], pl) % % INPUTS: p - input pest(s) containing parameter values. % xi - input ao(s) containing x values (as x or y fields, depending on the 'xfield' parameter) % pl - parameter list (see below) % % OUTPUTs: b - an AO containing the model evaluated at the given X % values, with the given parameter values. % % <a href="matlab:utils.helper.displayMethodInfo('pest', 'eval')">Parameters Description</a> % % VERSION: $Id: eval.m,v 1.28 2011/05/15 22:47:14 mauro Exp $ % % EXAMPLES: % % % 1) % % Prepare the symbolic model % mdl = smodel(plist('expression', 'a1.*x + a2.*x.^2 + a0', 'xvar', 'x', 'yunits', 'V')); % % % Prepare the pest object % % p = pest(plist('paramnames', {'a0','a1','a2'}, 'y', [1 2 3], 'models', mdl)); % % % Evaluate the object % a1 = eval(p, plist('xdata', ao([1:10]))) % a2 = eval(p, ao([1:10])) % % % 2) % % Prepare the symbolic model % mdl = smodel(plist('expression', 'a1.*x1 + a2.*x2 + a0', 'xvar', {'x1', 'x2'}, 'yunits', 'm', 'xunits', {'T', 'K'})); % % % Prepare the pest object % % p = pest(plist('paramnames', {'a0','a1','a2'}, 'y', [1 2 3], 'yunits', {'m', 'T/m', 'K/m'}, 'models', mdl)); % % % Evaluate the object % x1 = ao(plist('yvals', [1:10], 'fs', 1, 'yunits', 'T')); % x2 = ao(plist('yvals', [1:10], 'fs', 1, 'yunits', 'K')); % a1 = eval(p, plist('xdata', [x1 x2])) % a2 = eval(p, [x1 x2]) % a3 = eval(p, x1, x2) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = eval(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs and plists [psts, pst_invars, rest] = utils.helper.collect_objects(varargin(:), 'pest', in_names); [pl, pl_invars, rest] = utils.helper.collect_objects(rest, 'plist', in_names); [as, as_invars, rest] = utils.helper.collect_objects(rest, 'ao', in_names); [c, c_invars] = utils.helper.collect_objects(rest, 'cell', in_names); if nargout == 0 error('### eval can not be used as a modifier method. Please give at least one output'); end % combine plists pl = parse(pl, getDefaultPlist()); % Extract necessary parameters index = find(pl, 'index'); x = find(pl, 'Xdata'); if ~isempty(as) x = as; end % I don't know how to deal with the history of a cell array of aos if ~isempty(c) error('Please pass the arguments in a vector or a list') end % Extract the information about the x field, if necessary xfield = pl.find('xfield'); switch xfield case 'x' op = str2func('x'); case 'y' op = str2func('y'); otherwise error('oops') end % Extract the xvals for the smodel, and the output x for the ao switch class(x) case 'cell' switch class(x{1}) case 'ao' data_type = find(pl, 'type'); if isempty(data_type) % Nothing to do, output data type will be inherited from the first AO if ~isa(x{1}.data, 'cdata') out_x = x{1}; else out_x = []; end out_xunits = ''; else % In this case I have to extract the vector with the output x and xunits out_x = feval(op, x{1}); out_xunits = feval(str2func([xfield 'units']), x{1}); end case 'double' data_type = find(pl, 'type'); xvals = x; switch data_type case {'tsdata', 'fsdata', 'xydata'} out_x = x; out_xunits = find(pl, 'xunits'); case {'cdata', ''} out_x = []; out_xunits = ''; otherwise error('LTPDA error') end otherwise end case 'ao' data_type = find(pl, 'type'); if isempty(data_type) % Nothing to do, output data type will be inherited from the first AO if ~isa(x(1).data, 'cdata') out_x = x(1); else out_x = []; end out_xunits = ''; else % In this case I have to extract the vector with the output x and xunits out_x = feval(op, x(1)); out_xunits = feval(str2func([xfield 'units']), x(1)); end case 'double' data_type = find(pl, 'type'); xvals = x; switch data_type case {'tsdata', 'fsdata', 'xydata'} out_x = x; case {'cdata', ''} out_x = []; otherwise error('LTPDA error') end out_xunits = find(pl, 'xunits'); otherwise end % If the user wants to override the pest/smodel yunits, let's get them % This works only if the user sets them to something not empty yunits = find(pl, 'yunits'); % If we have AOs in a cell.... if iscell(x) && all(cellfun(@(x)isa(x, 'ao'), x)) % if we have multiple x, we need to convert the y values into a cell array xvals = cellfun(op, x, 'UniformOutput', false); elseif isa(x, 'ao') % we put the y values in to a cell array if numel(x) > 1 xvals = cellfun(op, num2cell(x), 'UniformOutput', false); else % ... we take the x values, as per the help xvals = feval(op, x); end end % Loop over input objects for jj = 1:numel(psts) pst = psts(jj); % evaluate models m = copy(pst.models, true); switch class(m) case 'smodel' % Make sure the smodel parameters are named the same as the pest m(index).setParams(pst.names, pst.y); % If the user provided the x vector(s), override the smodel x with these if ~isempty(xvals) m(index).setXvals(xvals); end % Go for the model evaluation out(jj) = eval(m(index), plist(... 'output type', data_type, 'output x', out_x, 'output xunits', out_xunits)); % Setting the units of the evaluated model if ~isempty(yunits) out(jj).setYunits(yunits); end case 'ao' % do linear combination: using lincom out(jj) = lincom(m, pst); out(jj).simplifyYunits; case 'matrix' % check objects of the matrix and switch switch class(m(1).objs) case 'smodel' % Make sure the smodel parameters are named the same as the pest for ii = 1:numel(m.objs) m.objs(ii).setParams(pst.names, pst.y); end % If the user provided the x vector(s), override the smodel x with these if ~isempty(x) for ii = 1:numel(m.objs) m.objs(ii).setXvals(x); end end % Go for the model evaluation tout = ao.initObjectWithSize(size(m.objs,1),size(m.objs,2)); for ii=1:size(m.objs,1) for kk=1:size(m.objs,2) tout(ii,kk) = eval(m.objs(ii,kk), plist(... 'output type', data_type, 'output x', out_x)); % Setting the units of the evaluated model if ~isempty(yunits) tout(ii,kk).setYunits(yunits); end end end out(jj) = matrix(tout); case 'ao' % get params from the pest object prms = pst.y; % build cdata aos prmsao = ao.initObjectWithSize(numel(prms),1); for ii = 1:numel(prms) prmsao(ii) = ao(cdata(prms(ii))); prmsao(ii).setYunits(pst.yunits(ii)); end % build matrix for parameters prm = matrix(prmsao); % build matrix for the model mm = ao.initObjectWithSize(numel(m(1).objs),numel(prms)); for ii = 1:numel(m(1).objs) for kk = 1:numel(prms) mm(ii,kk) = m(kk).getObjectAtIndex(ii); end end mmat = matrix(mm); % eval model tout = mmat*prm; out(jj) = tout; end otherwise error('### current version of pest/eval needs the ''models'' field to be a smodel') end % uncertainties for the evaluated model: calculate them from covariance matrix if ~isempty(pst.cov) && utils.prog.yes2true(pl.find('errors')); switch class(m) case 'smodel' C = pst.cov; p = pst.names; % here we need a matrix of "functions" which are the derivatives wrt parameters, % evaluated at each point x: F = []; for kk = 1:length(p) md = eval(diff(m(index), plist('var', p{kk}))); F = [F md.y]; end % The formula is: % D = F * C * F'; % and then we need to take % dy = sqrt(diag(D)) if size(md.y, 1) > 1 % Make sure we work with columns out(jj).setDy(sqrt(sum((F * C)' .* F'))'); else out(jj).setDy(sqrt(sum((F' * C)' .* F))); end otherwise warning('Propagation of the errors on the model not yet implemented') end end % Set output AO name name = sprintf('eval(%s,', pst.name); for kk = 2:numel(pst) name = [name pst(kk).name ',']; end name = [name(1:end-1) ')']; out(jj).name = name; % Add history if isempty(as) out(jj).addHistory(getInfo('None'), pl, pst_invars, pst(:).hist); else out(jj).addHistory(getInfo('None'), pl, {pst_invars as_invars}, [pst(:).hist as(:).hist]); end end % Set output varargout = utils.helper.setoutputs(nargout, out); end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist(); end % Build info object ii = minfo(mfilename, 'pest', 'ltpda', utils.const.categories.sigproc, '$Id: eval.m,v 1.28 2011/05/15 22:47:14 mauro Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if ~exist('pl', 'var') || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist(); % INDEX p = param({'index', 'Select which model must be evaluated if more than one.'}, paramValue.DOUBLE_VALUE(1)); pl.append(p); % XDATA p = param({'Xdata', ['The X values to evaluate the model at. This can be:<ul>'... '<li>a double vector </li>' ... '<li>a cell array of double vectors</li>' ... '<li>a single AO (from which the Y data will be extracted)</li>' ... '<li>a cell array of AOs (from which the Y data will be extracted)</li></ul>' ... ]}, paramValue.EMPTY_DOUBLE); pl.append(p); % XFIELD p = param({'xfield', 'Choose the field to extract the x values from when inputting AOs for parameter ''xdata''.'}, {2, {'x', 'y'}, paramValue.SINGLE}); pl.append(p); % TYPE pv = paramValue.DATA_TYPES; % Add an 'empty' on top of the list pv{2} = [{''} pv{2}]; p = param({'type', ['Choose the data type for the output ao.<br>'... 'If empty, and if the user input AOs as ''XDATA'', the type will be inherited.']}, pv); p.val.setValIndex(1); pl.append(p); % YUNITS p = param({'yunits','Unit on Y axis.'}, paramValue.STRING_VALUE('')); pl.append(p); % XUNITS p = param({'xunits','Unit on X axis.'}, paramValue.STRING_VALUE('')); pl.append(p); % ERRORS p = param({'errors', ['Estimate the uncertainty of the output values based <br>' ... 'on the parameters covariance matrix']}, paramValue.TRUE_FALSE); pl.append(p); end % END