Mercurial > hg > ltpda
view m-toolbox/test/test_ao_noisegen1D.m @ 2:18e956c96a1b database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Matlab code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Sun, 04 Dec 2011 21:23:09 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% A test script for ao/noisegen1D % % L. Ferraioli 10-11-08 % % $Id: test_ao_noisegen1D.m,v 1.7 2010/05/04 13:30:35 luigi Exp $ % %% Make white noise and compare results %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Description: % 1) Generates a random series of data (white) % 2) Build a pzm % 3) Calculate equivalent one sided data psd from pzm response % 4) Generates a miir object from pzm % 5) Filer white data with miir to generate reference colored noise % 6) Generates colored noise with noisegen1D % 7) calculated psd of generated and reference data % 8) check result by plotting % 1) a = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 10000)); % PSD model % 2) pzm = pzmodel(1, {0.01}, {0.1}); % 3) mod = (abs(pzm.resp).^2).*(2/fs); % this corresponds to the theoretical one sided psd of the data % 4) fpzm = miir(pzm,plist('fs',fs)); % 5) acr = filter(a,fpzm); % 6) Noise generation pl = plist(... 'model', mod, ... 'MaxIter', 10, ... 'PoleType', 3, ... 'MinOrder', 2, ... 'MaxOrder', 9, ... 'Weights', 2, ... 'Plot', false,... 'Disp', false,... 'MSEVARTOL', 1e-3,... 'FITTOL', 1e-5); ac = noisegen1D(a, pl); % 7) acxx = ac.psd; acrxx = acr.psd; % 8) iplot(acxx,acrxx,mod); %% Noise generation from fsdata model object - output time series %%%%%%%% % Description: % 1) Generates a fsdata object to be used as psd model % 2) Generates a random series of data (white) % 3) Generates colored noise with noisegen1D % 4) calculated psd of generated data % 5) check result by plotting % 1) fs = 10; % sampling frequency f = logspace(-6,log10(5),1000); pl_mod1 = plist('fsfcn', '0.01./(0.01+f)', 'f', f); mod1 = ao(pl_mod1); % fsdata model object % 2) % generating white noise a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', 10000)); % 3) Noise generation pl1 = plist(... 'model', mod1, ... 'MaxIter', 30, ... 'PoleType', 2, ... 'MinOrder', 3, ... 'MaxOrder', 20, ... 'Weights', 3, ... 'Plot', false,... 'Disp', false,... 'MSEVARTOL', 1e-3,... 'FITTOL', 1e-5); ac1 = noisegen1D(a1, pl1); % 4) acxx1 = ac1.psd; % 5) iplot(acxx1, mod1); %% Noise generation from fsdata model object - output filter %%%%%%%%%%%%% % Description: % 1) Generates a fsdata object to be used as psd model % 2) Generates coloring filter with noisegen1D % 3) Generates white noise data % 4) filter data % 4) calculated psd of filtered data % 5) check result by plotting % 1) Generates a fsdata object to be used as psd model fs = 10; % sampling frequency f = logspace(-6,log10(5),1000); pl_mod = plist('fsfcn', '0.01./(0.01+f)', 'f', f); mod = ao(pl_mod); % fsdata model object % 2) noise coloring filter generation pl1 = plist(... 'fs', fs, ... 'Iunits', '', ... 'Ounits', 'm', .... 'MaxIter', 30, ... 'PoleType', 2, ... 'MinOrder', 3, ... 'MaxOrder', 20, ... 'Weights', 3, ... 'Plot', false,... 'Disp', false,... 'MSEVARTOL', 1e-3,... 'FITTOL', 1e-5); fil = noisegen1D(mod, pl1); % 3) generating white noise a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', 1e5)); % 4) filter white noise b = filter(a,fil); % 4) psd estimation bxx = b.psd(plist('navs',8,'olap',50,'order',1)); % 5) iplot(bxx, mod); %% Noise generation from fsdata model object - output filter 2 %%%%%%%%%%%%% % Description: % 1) Generates a fsdata object to be used as psd model % 2) Generates coloring filter with noisegen1D % 3) Generates white noise data % 4) filter data % 4) calculated psd of filtered data % 5) check result by plotting % 1) Generates a fsdata object to be used as psd model fs = 10; % sampling frequency f = logspace(-6,log10(5),1000); pl_mod = plist('fsfcn', '0.01./(0.01+f)', 'f', f); mod = ao(pl_mod); % fsdata model object % 2) noise coloring filter generation pl1 = plist(... 'fs', fs, ... 'Iunits', '', ... 'Ounits', 'm', .... 'MaxIter', 30, ... 'PoleType', 2, ... 'MinOrder', 3, ... 'MaxOrder', 20, ... 'Weights', 3, ... 'Plot', false,... 'Disp', false,... 'MSEVARTOL', 1e-3,... 'FITTOL', 1e-5); fil = noisegen1D(mod, mod, pl1); % 3) generating white noise a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', 1e5)); % 4) filter white noise b = filter(a,fil(1)); % 4) psd estimation bxx = b.psd(plist('navs',8,'olap',50,'order',1)); % 5) iplot(bxx, mod); %% Noise generation from fsdata model object - output filter 3 %%%%%%%%%%%%% % Description: % 1) Generates a fsdata object to be used as psd model % 2) Generates coloring filter with noisegen1D % 3) Generates white noise data % 4) filter data % 4) calculated psd of filtered data % 5) check result by plotting % 1) Generates a fsdata object to be used as psd model fs = 10; % sampling frequency f = logspace(-6,log10(5),1000); pl_mod = plist('fsfcn', '0.01./(0.01+f)', 'f', f); mod = ao(pl_mod); % fsdata model object % 2) noise coloring filter generation pl1 = plist(... 'fs', fs, ... 'Iunits', '', ... 'Ounits', 'm', .... 'MaxIter', 30, ... 'PoleType', 2, ... 'MinOrder', 3, ... 'MaxOrder', 20, ... 'Weights', 3, ... 'Plot', false,... 'Disp', false,... 'MSEVARTOL', 1e-3,... 'FITTOL', 1e-5); [fil1, fil2] = noisegen1D(mod, mod, pl1); % 3) generating white noise a = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', 1e5)); % 4) filter white noise b = filter(a,fil1); % 4) psd estimation bxx = b.psd(plist('navs',8,'olap',50,'order',1)); % 5) iplot(bxx, mod); % END