Mercurial > hg > ltpda
view m-toolbox/test/test_matrix_linfitsvd.m @ 2:18e956c96a1b database-connection-manager
Add LTPDADatabaseConnectionManager implementation. Matlab code
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Sun, 04 Dec 2011 21:23:09 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% test for matrix/linfitsvd % % 17-11-2009 L Ferraioli % CREATION % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % $Id: test_matrix_linfitsvd.m,v 1.3 2010/04/25 21:27:57 mauro Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Definitions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pl_retrieve = plist('hostname', 'btlab.science.unitn.it', 'database', 'algo_testing'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% Loading data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Loading parameters cells fprintf('===== loading data... =====\n') % define parameters names and values parnames = { 'S11', 'S1D', 'SD1', 'SDD', ... 'TH', 'Th2', 'dH', ... 'dS11', 'dS1D', 'dSD1', 'dSDD', ... 'dh1', 'dh2', ... 'dsH', 'dsh1', 'dsh2', ... 'dx1', 'dx2', ... 'w0', 'w1', 'w2'}; exp3_nomvalues = {1 0 0 1 ... 0.35 0.28 0 ... 0 0 0 0, ... 0 0, ... 0 0 0, ... 0 0, ... 0.188 0 + 0.00114i 0 + 0.00141i ... }; exp3_truevalues = {1 0 0 1 ... 0.35 0.28 0.0526103537824434 ... 0 0 -0.0001 0, ... 0.0753993274155418 0.0569786061730967, ... 0.0670701072189726 0.00576108053758739 -0.0846457231187905, ... -0.0456546316180145 0.0395739758886965, ... 0.188 0 + 0.00114i 0 + 0.00141i ... }; % set ordered used parameters usedparams = {'dH','dsH','dS11','dS1D','dSD1','dSDD',... 'dh2','dsh2','dx1','dx2'}; %% get non-linear response model % the model is non-linear in the parameter dependence fprintf('===== Get TF Model... =====\n') H = matrix(plist('built-in','mdc3_ifo2ifo_v2')); %% load input signal % those are the same of exp 1 fprintf('===== Loading input signals... =====\n') oi1 = ao(pl_retrieve.pset('id', 1)); oid = ao(pl_retrieve.pset('id', 2)); %% load Coloring filters fprintf('===== loading coloring filters... =====\n') cf = matrix(pl_retrieve.pset('id', 26)); cf11 = cf.getObjectAtIndex(1, 1); cf12 = cf.getObjectAtIndex(1, 2); cf21 = cf.getObjectAtIndex(2, 1); cf22 = cf.getObjectAtIndex(2, 2); %% load Whitening filters fprintf('===== loading whitening filters... =====\n') WF = matrix(pl_retrieve.pset('id', 27)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% Generating signals %%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Get signals output of the system fprintf('===== get true values... =====\n') mod = copy(H, true); % get response with true params for ii = 1:numel(H.objs) mod.objs(ii).setParams(parnames,exp3_truevalues); end plfft = plist('Npad',[]); s11 = fftfilt(oi1,mod.objs(1,1),plfft); s12 = fftfilt(oid,mod.objs(1,2),plfft); s21 = fftfilt(oi1,mod.objs(2,1),plfft); s22 = fftfilt(oid,mod.objs(2,2),plfft); % get signals for exp 3.1 s1_exp_3_1 = s11; s1_exp_3_1.setName; sd_exp_3_1 = s21; sd_exp_3_1.setName; % get signals for exp 3.2 s1_exp_3_2 = s12; s1_exp_3_2.setName; sd_exp_3_2 = s22; sd_exp_3_2.setName; %% Adding noise to signals fprintf('===== adding noise to signals... =====\n') % get params Nsecs = s1_exp_3_1.nsecs; fs = s1_exp_3_1.fs; plcf = plist('bank','parallel'); pl_noise = plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', Nsecs); % starting noise generation exp1.1 a1_exp_3_1 = ao(pl_noise); a2_exp_3_1 = ao(pl_noise); % coloring noise exp 1.1 na1_exp_3_1 = filter(a1_exp_3_1,cf11,plcf) + filter(a2_exp_3_1,cf12,plcf); na2_exp_3_1 = filter(a1_exp_3_1,cf21,plcf) + filter(a2_exp_3_1,cf22,plcf); % starting noise generation exp 1.2 a1_exp_3_2 = ao(pl_noise); a2_exp_3_2 = ao(pl_noise); % coloring noise exp 1.2 na1_exp_3_2 = filter(a1_exp_3_2,cf11,plcf) + filter(a2_exp_3_2,cf12,plcf); na2_exp_3_2 = filter(a1_exp_3_2,cf21,plcf) + filter(a2_exp_3_2,cf22,plcf); % adding noise to signals o1_exp_3_1 = s1_exp_3_1 + na1_exp_3_1; od_exp_3_1 = sd_exp_3_1 + na2_exp_3_1; o1_exp_3_2 = s1_exp_3_2 + na1_exp_3_2; od_exp_3_2 = sd_exp_3_2 + na2_exp_3_2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% Build input for linfitsvd %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Build input objects % empty ao eao = ao(); %% %%% Model %%% % get response with nominal params for ii = 1:numel(H.objs) H.objs(ii).setParams(parnames,exp3_nomvalues); end %%% exp_3_1 %%% os1 = matrix(o1_exp_3_1,od_exp_3_1,plist('shape',[2 1])); is1 = matrix(oi1,eao,plist('shape',[2 1])); %%% exp_3_2 %%% os2 = matrix(o1_exp_3_2,od_exp_3_2,plist('shape',[2 1])); is2 = matrix(eao,oid,plist('shape',[2 1])); %% %%% Input signals iS = collection(is1,is2); %%% Known parameters vals = [0 0 0]; nms = {'dS11','dS1D','dSDD'}; errs = [1e-4 1e-3 1e-4]; kwnpar = pest(vals, nms, errs); %% do fit plfit = plist(... 'FitParams',usedparams,... 'Model',H,... 'Input',iS,... 'WhiteningFilter',WF,... 'Nloops',30,... 'Ncut',100,... 'KnownParams',kwnpar); opars = linfitsvd(os1,os2,plfit);