Mercurial > hg > ltpda
view m-toolbox/classes/@matrix/crb.m @ 7:1e91f84a4be8 database-connection-manager
Make ltpda_up.retrieve work with java.sql.Connection objects
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% CRB computes the inverse of the Fisher Matrix %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: CRB computes the inverse of the Fisher Matrix % % CALL: bs = crb(in,pl) % % INPUTS: in - matrix objects with input signals to the system % model - symbolic models containing the transfer function model % % pl - parameter list % % OUTPUTS: bs - covariance matrix AO % % <a href="matlab:utils.helper.displayMethodInfo('matrix', 'crb')">Parameters Description</a> % % VERSION: $Id: crb.m,v 1.17 2011/10/07 08:19:55 miquel Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = crb(varargin) % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end import utils.const.* utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); % Method can not be used as a modifier if nargout == 0 error('### crb cannot be used as a modifier. Please give an output variable.'); end % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all AOs smodels and plists [mtxs, mtxs_invars] = utils.helper.collect_objects(varargin(:), 'matrix', in_names); pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); % Combine plists pl = parse(pl, getDefaultPlist); % get params params = find(pl,'FitParams'); numparams = find(pl,'paramsValues'); mdl = find(pl,'model'); mtxns = find(pl,'noise'); outModel = find(pl,'outModel'); bmdl = find(pl,'built-in'); f1 = find(pl,'f1'); f2 = find(pl,'f2'); pseudoinv = find(pl,'pinv'); tol = find(pl,'tol'); outNames = find(pl,'outNames'); inNames = find(pl,'inNames'); % Decide on a deep copy or a modify in = copy(mtxs, nargout); n = copy(mtxns, nargout); % Get number of experiments nexp = numel(in); % fft fin = fft(in); % N should get before spliting, in order to convert correctly from psd to % fft N = length(fin(1).getObjectAtIndex(1).x); % Get rid of fft f =0, reduce frequency range if needed if ~isempty(f1) && ~isempty(f2) fin = split(fin,plist('frequencies',[f1 f2])); end FMall = zeros(numel(params),numel(params)); % loop over experiments for k = 1:nexp utils.helper.msg(msg.IMPORTANT, sprintf('Analysis of experiment #%d',k), mfilename('class'), mfilename); if (((numel(n(1).objs)) == 1) && (numel(in(1).objs) == 1)) % use signal fft to get frequency vector. i1 = fin(k).getObjectAtIndex(1,1); freqs = i1.x; FisMat = utils.math.fisher_1x1(i1,n(k),mdl,params,numparams,freqs,N,pl,inNames,outNames); % store Fisher Matrix for this run FM{k} = FisMat; % adding up FMall = FMall + FisMat; elseif (((numel(n(1).objs)) == 2) && (numel(in(1).objs) == 2)) % use signal fft to get frequency vector. Take into account signal % could be empty or set to zero % 1st channel if all(fin(k).getObjectAtIndex(1,1).y == 0) || isempty(fin(k).getObjectAtIndex(1,1).y) i1 = ao(plist('type','fsdata','xvals',0,'yvals',0)); else i1 = fin(k).getObjectAtIndex(1,1); freqs = i1.x; end % 2nd channel if all(fin(k).getObjectAtIndex(2,1).y == 0) || isempty(fin(k).getObjectAtIndex(2,1).y) i2 = ao(plist('type','fsdata','xvals',0,'yvals',0)); else i2 = fin(k).getObjectAtIndex(2,1); freqs = i2.x; end FisMat = utils.math.fisher_2x2(i1,i2,n(k),mdl,params,numparams,freqs,N,pl,inNames,outNames); % store Fisher Matrix for this run FM{k} = FisMat; % adding up FMall = FMall + FisMat; elseif ((numel(n(1).objs) == 3) && (numel(in.objs) == 4) && ~isempty(outModel)) % this is only valid for the magnetic model, where we have 4 inputs % (corresponding to the 4 conformator waveforms) and 3 outputs % (corresponding to IFO.x12, IFO.eta1 and IFO.phi1). And there is a % contribution of an outModel converting the conformator waveforms % into forces and torques. % For other cases not implemented yet. % use signal fft to get frequency vector. Take into account signal % could be empty or set to zero % 1st channel freqs = fin.getObjectAtIndex(1,1).x; for ii = 1:numel(n.objs) for jj = ii:numel(n.objs) % Compute psd if (ii==jj) spec(ii,jj) = psd(n(k).getObjectAtIndex(ii), pl); S2(ii,jj) = interp(spec(ii,jj),plist('vertices',freqs,'method','linear')); else spec(ii,jj) = cpsd(n(k).getObjectAtIndex(ii),n(k).getObjectAtIndex(jj),pl); S2(ii,jj) = interp(spec(ii,jj),plist('vertices',freqs,'method','linear')); S2(jj,ii) = conj(S2(ii,jj)); end end end S = matrix(S2,plist('shape',[numel(n.objs) numel(n.objs)])); % get some parameters used below fs = S.getObjectAtIndex(1,1).fs; if(~isempty(outModel)) for lll=1:size(outModel,1) for kkk=1:size(outModel,2) outModel(lll,kkk) = split(outModel(lll,kkk),plist('frequencies',[f1 f2])); end end end % Avoid numerical differentiation (faster for the magnetic case) Param{1} = [ 1 0 0 0; 0 0 0 0; 0 0 0 0;]; Param{2} = [ 0 1 0 0; 0 0 0 0; 0 0 0 0;]; Param{3} = [ 0 0 0 0; 0 0 1 0; 0 0 0 0;]; Param{4} = [ 0 0 0 0; 0 0 0 0; 0 0 0 1;]; % scaling of PSD % PSD = 2/(N*fs) * FFT *conj(FFT) for j = 1: numel(S.objs) % spectra to variance C(:,j) = (N*fs/2)*S.objs(j).data.getY; end detm = (C(:,1).*C(:,5).*C(:,9) + ... C(:,2).*C(:,6).*C(:,7) + ... C(:,3).*C(:,4).*C(:,8) -... C(:,7).*C(:,5).*C(:,3) -... C(:,8).*C(:,6).*C(:,1) -... C(:,9).*C(:,4).*C(:,2)); InvS11 = (C(:,5).*C(:,9) - C(:,8).*C(:,6))./detm; InvS12 = -(C(:,4).*C(:,9) - C(:,7).*C(:,6))./detm; InvS13 = (C(:,4).*C(:,8) - C(:,7).*C(:,5))./detm; InvS21 = -(C(:,2).*C(:,9) - C(:,8).*C(:,3))./detm; InvS22 = (C(:,1).*C(:,9) - C(:,7).*C(:,3))./detm; InvS23 = -(C(:,1).*C(:,8) - C(:,7).*C(:,2))./detm; InvS31 = (C(:,2).*C(:,6) - C(:,5).*C(:,3))./detm; InvS32 = -(C(:,1).*C(:,6) - C(:,4).*C(:,3))./detm; InvS33 = (C(:,1).*C(:,5) - C(:,4).*C(:,2))./detm; for pp = 1:length(params) for ll = 1:size(outModel,1) for kk = 1:size(Param{pp},2) % index convention: H(1,1)->h(1) H(2,1)->h(2) H(1,2)->h(3) H(2,2)->h(4) tmp = 0; for innerIndex = 1:size(outModel,2) tmp = tmp + outModel(ll,innerIndex).y * Param{pp}(innerIndex,kk); end h{pp}(:,(kk-1)*size(outModel,1) + ll) = tmp; end end end for kk = 1:numel(in.objs) inV(:,kk) = fin.objs(kk).data.getY; end % compute Fisher Matrix for i =1:length(params) for j =1:length(params) for ll = 1:size(outModel,1) tmp = 0; for kk = 1:size(Param{1},2) tmp = tmp + h{i}(:,(kk-1)*size(outModel,1) + ll).*inV(:,kk); end v{i}(:,ll) = tmp; end for ll = 1:size(outModel,1) tmp = 0; for kk = 1:size(Param{1},2) tmp = tmp + h{j}(:,(kk-1)*size(outModel,1) + ll).*inV(:,kk); end v{j}(:,ll) = tmp; end v1v1 = conj(v{i}(:,1)).*v{j}(:,1); v1v2 = conj(v{i}(:,1)).*v{j}(:,2); v1v3 = conj(v{i}(:,1)).*v{j}(:,3); v2v1 = conj(v{i}(:,2)).*v{j}(:,1); v2v2 = conj(v{i}(:,2)).*v{j}(:,2); v2v3 = conj(v{i}(:,2)).*v{j}(:,3); v3v1 = conj(v{i}(:,3)).*v{j}(:,1); v3v2 = conj(v{i}(:,3)).*v{j}(:,2); v3v3 = conj(v{i}(:,3)).*v{j}(:,3); FisMat(i,j) = sum(real(InvS11.*v1v1 +... InvS12.*v1v2 +... InvS13.*v1v3 +... InvS21.*v2v1 +... InvS22.*v2v2 +... InvS23.*v2v3 +... InvS31.*v3v1 +... InvS32.*v3v2 +... InvS33.*v3v3)); end end % store Fisher Matrix for this run FM{k} = FisMat; % adding up FMall = FMall + FisMat; else error('Implemented cases: 2 inputs / 2outputs (TN3045 analysis), and 4 inputs / 3 outpus (magnetic complete analysis model. Other cases have not been implemented yet. Sorry for the inconvenience)'); end end % inverse is the optimal covariance matrix if pseudoinv && isempty(tol) cov = pinv(FMall); elseif pseudoinv cov = pinv(FMall,tol); else cov = FMall\eye(size(FMall)); end % create AO out = ao(cov); % Fisher Matrix in the procinfo out.setProcinfo(plist('FisMat',FM)); varargout{1} = out; end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pls = []; else sets = {'Default'}; pls = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: crb.m,v 1.17 2011/10/07 08:19:55 miquel Exp $', sets, pls); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function plout = getDefaultPlist() persistent pl; if exist('pl', 'var')==0 || isempty(pl) pl = buildplist(); end plout = pl; end function pl = buildplist() pl = plist.WELCH_PLIST; pset(pl,'Navs',1) p = plist({'f1', 'Initial frequency for the analysis'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'f2', 'Final frequency for the analysis'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'FitParamas', 'Parameters of the model'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'model','An array of matrix models'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'noise','An array of matrices with the cross-spectrum matrices'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'built-in','Symbolic models of the system as a string of built-in models'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'frequencies','Array of start/sop frequencies where the analysis is performed'}, paramValue.EMPTY_STRING); pl.append(p); p = plist({'pinv','Use the Penrose-Moore pseudoinverse'}, paramValue.TRUE_FALSE); pl.append(p); p = plist({'tol','Tolerance for the Penrose-Moore pseudoinverse'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'step','Numerical differentiation step for ssm models'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'ngrid','Number of points in the grid to compute the optimal differentiation step for ssm models'}, paramValue.EMPTY_DOUBLE); pl.append(p); p = plist({'stepRanges','An array with upper and lower values for the parameters ranges. To be used to compute the optimal differentiation step for ssm models.'}, paramValue.EMPTY_DOUBLE); pl.append(p); end