Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/ng1D_content.html @ 7:1e91f84a4be8 database-connection-manager
Make ltpda_up.retrieve work with java.sql.Connection objects
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<p> <ul> <li><a href="#description">Description</a></li> <li><a href="#call">Call</a></li> <li><a href="#inputs">Inputs</a></li> <li><a href="#outputs">Outputs</a></li> <li><a href="#algorithm">Algorithm</a></li> <li><a href="#parameters">Parameters</a></li> <li><a href="#example">Example</a></li> </ul> </p> <h2><a name="description">Description</a></h2> <p> noisegen1D is a coloring tool allowing the generation of colored noise from withe noise with a given spectrum. The function constructs a coloring filter through a fitting procedure to the model provided. If no model is provided an error is prompted. The colored noise provided has one-sided psd corresponding to the input model. </p> <h2><a name="call">Call</a></h2> <div class="fragment"> <pre> b = noisegen1D(a, pl); [b1,b2,...,bn] = noisegen1D(a1,a2,...,an, pl); </pre> </div> <h2><a name="inputs">Inputs</a></h2> <p> <ul> <li> a - is a tsdata analysis object or a vector of tsdata analysis objects <li> pl - is a plist with the input parameters. See the list of function parameters below </ul> </p> <h2><a name="outputs">Outputs</a></h2> <p> <ul> <li> b - Colored time-series AOs. The coloring filters used are stored in the objects procinfo field under the parameter 'Filt'. </ul> </p> <h2><a name="algorithm">Algorithm</a></h2> <p> <ol> <li> Fit a set of partial fraction z-domain filters using utils.math.psd2tf. <li> Convert to array of MIIR filters. <li> Filter time-series in parallel. </ol> </p> <h2><a name="parameters">Parameters</a></h2> <p> <ul> <li> 'Model' - a frequency-series AO describing the model psd. <li> 'MaxIter' - Maximum number of iterations in fit routine [default: 30] <li> 'PoleType' - Choose the pole type for fitting: <ul> <li> 1 - use real starting poles. <li> 2 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta = linspace(0,pi,N/2+1). <li> 3 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta = linspace(0,pi,N/2+2) [default]. </ul> </li> <li> 'MinOrder' - Minimum order to fit with. [default: 2]. <li> 'MaxOrder' - Maximum order to fit with. [default: 25] <li> 'Weights' - choose weighting for the fit: [default: 2] <ul> <li> 1 - equal weights for each point. <li> 2 - weight with 1/abs(model). <li> 3 - weight with 1/abs(model).^2. <li> 4 - weight with inverse of the square mean spread of the model. </ul> </li> <li> 'Plot' - plot results of each fitting step. [default: false] <li> 'Disp' - Display the progress of the fitting iteration. [default: false] <li> 'FitTolerance' - Log Residuals difference - Check if the minimum of the logarithmic difference between data and residuals is larger than a specified value. ie. if the conditioning value is 2, the function ensures that the difference between data and residuals is at lest 2 order of magnitude lower than data itsleves. [Default: 2]. <li> 'RMSEVar' - Root Mean Squared Error Variation - Check if the variation of the RMS error is smaller than 10^(-b), where b is the value given to the variable. This option is useful for finding the minimum of Chi squared. [default: 7]. </ul> </p> <h2><a name="example">Example</a></h2> <div class="fragment"> <pre> %% Noise generation from fsdata model object %%%%%%%%%%%%%%%%%%%%%%%%%%% % Description: % 1) Generate a fsdata object to be used as psd model % 2) Generate a random series of data (white) % 3) Generate colored noise with noisegen1D % 4) calculated psd of generated data % 5) check result by plotting % 1) fs = 10; % sampling frequency pl_mod1 = plist('fsfcn', '0.01./(0.01+f)', 'f1', 1e-6, 'f2', 5, 'nf', 100); mod1 = ao(pl_mod1); % fsdata model object % 2) % generating white noise a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', 1000)); % 3) Noise generation pl1 = plist(... 'model', mod1, ... 'MaxIter', 30, ... 'PoleType', 2, ... 'MinOrder', 10, ... 'MaxOrder', 20, ... 'Weights', 2, ... 'Plot', false,... 'Disp', false,... 'RMSEVar', 5,... 'FitTolerance', 2); ac1 = noisegen1D(a1, pl1); % 4) acxx1 = ac1.psd; % 5) iplot(acxx1, mod1); </pre> </div> <p> <div align="center"> <IMG src="images/ng1D_1.png" width="800" height="600" align="center" border="0"> </div> </p>