Mercurial > hg > ltpda
view m-toolbox/test/test_ao_noisegen2D.m @ 7:1e91f84a4be8 database-connection-manager
Make ltpda_up.retrieve work with java.sql.Connection objects
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% A test script for ao/noisegen2D % % DESCRIPTION: Run noisegen2D with test data and test procedure accuracy % % L. Ferraioli 10-11-08 % % $Id: test_ao_noisegen2D.m,v 1.9 2010/05/03 19:04:45 luigi Exp $ % %% General use variables and vectors userdir = 'C:\Users\Luigi'; % You should set your own dir f = logspace(-6,log10(5),300); fs = 10; Nt = fs*10000; %% Make white noise a1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 1e5)); a2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', 10, 'nsecs', 1e5)); a = [a1 a2]; %% CSD Noise models fundir = fullfile(userdir,'ltp_data_analysis\MDCs\MDC1_UTN'); cf = cd; cd(fundir); [TF,CSD] = mdc1_tf_models(plist('f',f,'fs',fs)); cd(cf); %% Input data psd a1xx = a1.psd; a2xx = a2.psd; %% Making csd of input data pl = plist('Nfft', Nt); iCSD = cpsd(a,pl); %% plot input data psd iplot(a1xx,a2xx) %% Plot Model Tfs iplot(TF(1,1),TF(1,2),TF(2,1),TF(2,2)) %% Plot Model CSD iplot(CSD(1,1),CSD(1,2),CSD(2,1),CSD(2,2)) %% Noise generation pl = plist(... 'csd11', CSD(1,1), ... 'csd12', CSD(1,2), ... 'csd21', CSD(2,1), ... 'csd22', CSD(2,2), ... 'MaxIter', 80, ... 'PoleType', 2, ... 'MinOrder', 15, ... 'MaxOrder', 45, ... 'Weights', 3, ... 'FITTOL', 1e-3,... 'MSEVARTOL', 1e-1,... 'UseSym', 0,... 'Plot', false,... 'Disp', false); ac = noisegen2D(a, pl); %% Checking results and starting data % iplot(a) iplot(ac) %% Making cross-spectrum % acxx = ac.cpsd; plpsd = plist('navs',2,'order',1,'olap',50); acxx1 = ac(1).psd(plpsd); acxx2 = ac(2).psd(plpsd); iplot(acxx1,CSD(1,1),acxx2,CSD(2,2)) %% Plotting spectra % iplot(acxx); iplot(acxx(1,1),CSD(1,1)) iplot(abs(acxx(1,2)),abs(CSD(1,2))) iplot(acxx(2,2),CSD(2,2)) %% m1=mean(acxx(2,2).data.y(end-10,end)) % calculate average on the tail of channel 2 m2=mean(CSD(2,2).data.y(end-5,end))% calculate average on the tail of channel 2 m1/m2 % verify that the ratio is near 1 %% % ************************************************************************ % Some more analysis for testing the accuracy of noise generation procedure % ************************************************************************ %% Extracting filters from data Filt11 = find(ac(1).procinfo,'FILT11'); Filt12 = find(ac(1).procinfo,'FILT12'); Filt21 = find(ac(2).procinfo,'FILT21'); Filt22 = find(ac(2).procinfo,'FILT22'); %% Calculating filters responses tr11 = resp(Filt11,plist('f',f)); rFilt11 = tr11(1); for ii = 2:numel(tr11) rFilt11 = rFilt11 + tr11(ii); end rFilt11.setName('rFilt11', 'internal'); tr12 = resp(Filt12,plist('f',f)); rFilt12 = tr12(1); for ii = 2:numel(tr12) rFilt12 = rFilt12 + tr12(ii); end rFilt12.setName('rFilt12', 'internal'); tr21 = resp(Filt21,plist('f',f)); rFilt21 = tr21(1); for ii = 2:numel(tr21) rFilt21 = rFilt21 + tr21(ii); end rFilt21.setName('rFilt21', 'internal'); tr22 = resp(Filt22,plist('f',f)); rFilt22 = tr22(1); for ii = 2:numel(tr22) rFilt22 = rFilt22 + tr22(ii); end rFilt22.setName('rFilt22', 'internal'); %% Obtaining transfer functions % calculating transfer functions from data pl = plist('Nfft', Nt); etf11 = tfe(a(1),ac(1),pl); etf12 = tfe(a(2),ac(1),pl); etf21 = tfe(a(1),ac(2),pl); etf22 = tfe(a(2),ac(2),pl); %% Comparing Filters Responses with estimated TFs (e-TFs) % Comparing filters responses and calculated TFs pl = plist('Legends', {'Filter Response','e-TF'}); iplot(rFilt11,etf11,pl) iplot(rFilt12,etf12,pl) iplot(rFilt21,etf21,pl) iplot(rFilt22,etf22,pl) %% Comparing starting TFs (s-TFs) with estimated TFs pl = plist('Legends', {'s-TF','e-TF'}); iplot(TF(1,1),etf11/sqrt(fs)) iplot(TF(1,2),etf12/sqrt(fs)) iplot(TF(2,1),etf21/sqrt(fs)) iplot(TF(2,2),etf22/sqrt(fs)) %% Building CSD from estimated TFs (e-TFs) % Output CSD is obtained as % eCSD = [TF11 TF12;TF21 TF22]*iCSD*[TF11 TF12;TF21 TF22]' eCSD = [etf(1,3) etf(2,3);etf(1,4) etf(2,4)]*iCSD*[etf(1,3) etf(2,3);etf(1,4) etf(2,4)]'; ecsd11 = eCSD(1,1); ecsd12 = eCSD(1,2); ecsd22 = eCSD(2,2); % ecsd11 = etf(1,3).*conj(etf(1,3))+etf(2,3).*conj(etf(2,3)); % ecsd12 = etf(1,3).*conj(etf(1,4))+etf(2,3).*conj(etf(2,4)); % ecsd22 = etf(2,4).*conj(etf(2,4))+etf(1,4).*conj(etf(1,4)); %% Comparing original CSD with e-TFs CSD pl = plist('Legends', {'Original CSD','e-TF CSD'}); iplot(abs(CSD(1,1)),ecsd11/(fs),pl) iplot(abs(CSD(1,2)),ecsd12/(fs),pl) iplot(abs(CSD(2,2)),ecsd22/(fs),pl) %% Filtering data separately % This operation is performed internally to the noisegen2D. Output data are % then obtained by b1 = b11 + b12 and b2 = b21 + b22 b11 = filter(a1,plist('filter',Filt11,'bank','parallel')); b12 = filter(a2,plist('filter',Filt12,'bank','parallel')); b21 = filter(a1,plist('filter',Filt21,'bank','parallel')); b22 = filter(a2,plist('filter',Filt22,'bank','parallel')); %% Extracting transfer functions from separately filtered data pl = plist('Nfft', Nt); etf11 = tfe(a1,b11,pl); etf12 = tfe(a2,b12,pl); etf21 = tfe(a1,b21,pl); etf22 = tfe(a2,b22,pl); %% Comparing separately-estimated TFs (se-TFs) with filter responses pl = plist('Legends', {'Filter Response','se-TF'}); iplot(rFilt11,etf11,pl) iplot(rFilt12,etf12,pl) iplot(rFilt21,etf21,pl) iplot(rFilt22,etf22,pl) %% Building CSD from se-TFs % Output CSD is obtained as % eCSD = [TF11 TF12;TF21 TF22]*iCSD*[TF11 TF12;TF21 TF22]' seCSD = [etf11 etf12;etf21 etf22]*iCSD*[etf11 etf12;etf21 etf22]'; secsd11 = seCSD(1,1); secsd12 = seCSD(1,2); secsd22 = seCSD(2,2); % secsd11 = etf11(1,2).*conj(etf11(1,2))+etf12(1,2).*conj(etf12(1,2)); % secsd12 = etf11(1,2).*conj(etf21(1,2))+etf12(1,2).*conj(etf22(1,2)); % secsd22 = etf22(1,2).*conj(etf22(1,2))+etf21(1,2).*conj(etf21(1,2)); %% Comparing original CSD with e-TFs CSD pl = plist('Legends', {'Original CSD','se-TF CSD'}); iplot(CSD(1,1),secsd11/(fs),pl) iplot(CSD(1,2),secsd12/(fs),pl) iplot(CSD(2,2),secsd22/(fs),pl) %% Comparing filters with TFs obtained by eigendecomposition % This function output transfer functions as they are obtained by the % eigendecomposition process. i.e. before the fitting process icsd11 = CSD(1,1).data.y*fs/2; icsd12 = CSD(1,2).data.y*fs/2; icsd21 = CSD(2,1).data.y*fs/2; icsd22 = CSD(2,2).data.y*fs/2; [tf11,tf12,tf21,tf22] = utils.math.eigcsd(icsd11,icsd12,icsd21,icsd22,'USESYM',0,'DIG',50,'OTP','TF'); % Making AOs eigtf11 = ao(fsdata(f,tf11,fs)); eigtf12 = ao(fsdata(f,tf12,fs)); eigtf21 = ao(fsdata(f,tf21,fs)); eigtf22 = ao(fsdata(f,tf22,fs)); %% Comparing eig-TFs with output filters % Compare TFs before and after the fitting process pl = plist('Legends', {'eig-TF','Filter Response'}); iplot(eigtf11,rFilt11,pl) iplot(eigtf12,rFilt12,pl) iplot(eigtf21,rFilt21,pl) iplot(eigtf22,rFilt22,pl) %% Phase difference between eig-TFs and output filters % checking that phase differences between TFs are preserved by the fitting % process eigph1 = unwrap(angle(eigtf11)-angle(eigtf21)); filtph1 = unwrap(angle(rFilt11)-angle(rFilt21)); eigph2 = unwrap(angle(eigtf22)-angle(eigtf12)); filtph2 = unwrap(angle(rFilt22)-angle(rFilt12)); pl = plist('Legends',{'eig-TF \Delta\phi','Filter \Delta\phi'},'YScales',{'All','lin'}); iplot(eigph1,filtph1+2*pi,pl) iplot(eigph2,filtph2+2*pi,pl) %% Comparing eig-TFs with se-TFs % Compare eigendecomposition results with separately estimated TFs (se-TFs) pl = plist('Legends', {'eig-TF','se-TF'}); iplot(eigtf11,etf11(1,2),pl) iplot(eigtf12,etf12(1,2),pl) iplot(eigtf21,etf21(1,2),pl) iplot(eigtf22,etf22(1,2),pl) %% Phase difference between eig-TFs and se-TFs % checking that phase differences between TFs are preserved by the fitting % process also for the filtered data (se-TFs) eigph1 = unwrap(angle(eigtf11)-angle(eigtf21)); filtph1 = unwrap(angle(etf11(1,2))-angle(etf21(1,2))); eigph2 = unwrap(angle(eigtf22)-angle(eigtf12)); filtph2 = unwrap(angle(etf22(1,2))-angle(etf12(1,2))); pl = plist('Legends',{'eig-TF \Delta\phi','se-TF \Delta\phi'},'YScales',{'All','lin'}); iplot(eigph1,filtph1+2*pi,pl) iplot(eigph2,filtph2,pl) % END