Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/xCovmat.m @ 27:29276498ebdb database-connection-manager
Remove LTPDARepositoryManager implementation
* * *
Remove GUI helper
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Compute cross covariance matrix of two data series % % CALL % % Get autocovariance % cmat = xCovmat(x) % cmat = xCovmat(x,[]) % cmat = xCovmat(x,[],'cutbefore',10,'cutafter',10) % % Get crosscovariance % cmat = xCovmat(x,y) % cmat = xCovmat(x,y,'cutbefore',10,'cutafter',10) % % INPUT % % - x, y, data series % - cutbefore, followed by the data samples to cut at the starting of the % data series % - cutafter, followed by the data samples to cut at the ending of the % data series % % % L Ferraioli 10-10-2010 % % $Id: xCovmat.m,v 1.1 2010/11/16 16:41:37 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function cmat = xCovmat(x,y,varargin) acov = true; % willing to work with columns if size(x,1)<size(x,2) x = x.'; end % subtract the mean x = x - mean(x); if nargin > 1 if ~isempty(y) % crosscovariance acov = false; if size(y,1)<size(y,2) y = y.'; end y = y - mean(y); end end nx = size(x,1); cutbefore = []; cutafter = []; if ~isempty(varargin) for j=1:length(varargin) if strcmp(varargin{j},'cutbefore') cutbefore = varargin{j+1}; end if strcmp(varargin{j},'cutafter') cutafter = varargin{j+1}; end end end if acov % autocovariance % init trim matrix trim = zeros(nx,nx); % fillin the trim matrix for ii=1:nx trim(1:nx-ii+1,ii) = x(ii:nx,1); end %trim = sparse(trim); cmat = trim*conj(trim); % normalization %nmat = sparse(triu(ones(nx,nx),0)); nmat = triu(ones(nx,nx),0); nmat = rot90(nmat); normat = nmat*nmat; cmat = cmat./normat; %cmat = full(cmat); if ~isempty(cutbefore) % cut rows cmat(1:cutbefore,:)=[]; % cut columns cmat(:,1:cutbefore)=[]; end [nn,mm]=size(cmat); if ~isempty(cutafter) % cut rows cmat(nn-cutafter:nn,:)=[]; % cut columns cmat(:,mm-cutafter:mm)=[]; end else % cross covariance % init trim matrix trimx = zeros(nx,nx); trimy = zeros(nx,nx); % fillin the trim matrix for ii=1:nx trimx(1:nx-ii+1,ii) = x(ii:nx,1); trimy(1:nx-ii+1,ii) = y(ii:nx,1); end cmat = trimx*conj(trimy); % normalization nmat = triu(ones(nx,nx),0); nmat = rot90(nmat); normat = nmat*nmat; cmat = cmat./normat; if ~isempty(cutbefore) % cut rows cmat(1:cutbefore,:)=[]; % cut columns cmat(:,1:cutbefore)=[]; end [nn,mm]=size(cmat); if ~isempty(cutafter) % cut rows cmat(nn-cutafter:nn,:)=[]; % cut columns cmat(:,mm-cutafter:mm)=[]; end end end