Mercurial > hg > ltpda
view m-toolbox/test/MDC1/test_mdc1_ifo2acc.m @ 27:29276498ebdb database-connection-manager
Remove LTPDARepositoryManager implementation
* * *
Remove GUI helper
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% MDC1 Conversion to acceleration %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Test script for the MDC1 conversion to acceleration of IFO data % % $Id: test_mdc1_ifo2acc.m,v 1.2 2009/09/24 15:17:36 luigi Exp $ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Clear clear all %% Loading data currPath = cd; cd 'C:\Users\Luigi\Dati\mock_data\interferometer\'; j=1; fs = 10; disp(sprintf('*** Reading data %d', j)); in = load(sprintf('mockdata_16_48_17_11_2007_%d.dat', j)); d1 = in(:,2); d12 = in(:,3); % Build O1 eval('ts = tsdata(d1, fs);'); eval(sprintf('o1_%d = ao(ts);', j)); eval(sprintf('o1_%d = setName(o1_%d, ''o1'');', j, j)); eval(sprintf('o1_%d = setXunits(o1_%d, ''s'');', j, j)); eval(sprintf('o1_%d = setYunits(o1_%d, ''m'');', j, j)); % Build O12 eval('ts = tsdata(d12, fs);'); eval(sprintf('o12_%d = ao(ts);', j)); eval(sprintf('o12_%d = setName(o12_%d, ''o12'');', j, j)); eval(sprintf('o12_%d = setXunits(o12_%d, ''s'');', j, j)); eval(sprintf('o12_%d = setYunits(o12_%d, ''m'');', j, j)); cd(currPath) eval(sprintf('ch1 = o1_%d;',j)); eval(sprintf('ch2 = o12_%d;',j)); %% Check data spectra ch1xx = ch1.psd; ch2xx = ch2.psd; iplot(ch1xx,ch2xx) %% Set useful params fs = ch1.fs; % Hz - sampling frequency TAU_th = 0.1; % s - time constant of thrusters actuation DELTAT_Th = 0.315; % s - delay introduced to command the force to thrusters system TAU_el = 0.01; % s - time constant of electrostatic actuation DELTAT_el = 0.305; % s - delay introduced to command the force to electrostatic actuators w1 = 0.00114i; % TM1 stiffness w2 = 0.00141i; % TM2 stiffness S11 = 1; % Calibration of IFO CH1 S1D = 0; % Cross-talk diff channel to channel 1 SD1 = -1e-4; % Cross-talk channel 1 to diff channel SDD = 1; % Calibration of IFO diff channel %% Load built in model for Drag Free pl = plist('built-in','mdc1_Cdf','gain',1); Cdf = rational(pl); %% Load Built in model for Thrusters pl = plist('built-in','mdc1_actuation','fs',fs,'tau',TAU_th,'DeltaT',DELTAT_Th); ThAct = miir(pl); %% Load built in model for Suspension controller pl = plist('built-in','mdc1_Csus','gain',1); Csus = rational(pl); %% Load Built in model for Electrostatic actuators pl = plist('built-in','mdc1_actuation','fs',fs,'tau',TAU_el,'DeltaT',DELTAT_el); ElAct = miir(pl); %% Convert to acceleration pl = plist('w1',w1,'w2',w2,'S11',S11,'S1D',S1D,'SD1',SD1,'SDD',SDD,... 'Cdf',Cdf,'Csus',Csus,'ThAct',ThAct,'ElAct',ElAct,'method','parfit'); [a1,ad] = ltp_ifo2acc(ch1,ch2,pl); %% plotting output psd a1xx = a1.psd; adxx = ad.psd; iplot(a1xx,adxx) %% plotting output lpsd a1xx = a1.lpsd; adxx = ad.lpsd; iplot(a1xx,adxx,plist('LineWidths',{'All',3})) %% Do step-by-step Checks % frequency range for TFs calculation f = [logspace(-6,log10(5),300)]'; %% Get intermediate steps %%% IFO2POS conversion ifod = S11*SDD - S1D*SD1; x1 = (ch1.*SDD - ch2.*S1D)./ifod; xd = (ch2.*S11 - ch1.*SD1)./ifod; %%% Free Dynamics sw1 = w1^2; sw2 = w2^2; D0COEFF = -3/35; D1COEFF = -1/5; D2COEFF = 2/7; pldyn = plist('ALPHA0',sw1,'ALPHA1',0,'ALPHA2',1,... 'D0COEFF',D0COEFF,'D1COEFF',D1COEFF,'D2COEFF',D2COEFF,... 'X0',0,'TARGETUNITS',x1.yunits./(unit('s').^2)); a1fd = eqmotion(x1,pldyn); % Total Differential force per unit of mass pldyn = plist('ALPHA0',sw2,'ALPHA1',0,'ALPHA2',1,... 'D0COEFF',D0COEFF,'D1COEFF',D1COEFF,'D2COEFF',D2COEFF,... 'X0',0,'TARGETUNITS',x1.yunits./(unit('s').^2)); adfd = eqmotion(xd,pldyn); % calculate dynamical cross talk adct = x1.*(sw2 - sw1); adct.setYunits(adfd.yunits); % Total differential force adfd = adfd + adct; %%% DF Controller parfrCdf = parfrac(Cdf); filtCdf = miir(parfrCdf,plist('FS',fs)); ac1 = filter(ch1, filtCdf); %%% Thrusters actuation acomm1 = filter(ac1, ThAct); %%% Sus controller parfrCsus = parfrac(Csus); filtCsus = miir(parfrCsus,plist('FS',fs)); acd = filter(ch2, filtCsus); %%% Electrostatic actuation acommd = filter(acd, ElAct); %% Free Dynamics TFs *** % get transfer functions from data tffd1 = ltfe(ch1,a1fd); tffd2 = ltfe(ch2,adfd); % Get expected transfer functions FD1 = ao(plist('fsfcn', '(2.*pi.*1i.*f).^2 + -1.3e-6', 'f', f)); FD2 = ao(plist('fsfcn', '-(-1e-4).*(2.*pi.*1i.*f).^2 + (-2e-6) - (-1.3e-6) - (-1e-4)*(-2e-6) + (2.*pi.*1i.*f).^2 + (-2e-6)', 'f', f)); % plot plpl = plist('Legends', {'Dyn ch1','Dyn ch1 data','Dyn ch12','Dyn ch12 data'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(abs(FD1),abs(tffd1),abs(FD2),abs(tffd2),plpl) %% Controllers TFs *** % get transfer functions from data tffd1 = ltfe(ch1,ac1); tffd2 = ltfe(ch2,acd); % Get expected transfer functions pl = plist('built-in','mdc1_Cdf','gain',1); Cdf = rational(pl); Cdfr = resp(Cdf,plist('f',f)); pl = plist('built-in','mdc1_Csus','gain',1); Csus = rational(pl); Csusr = resp(Csus,plist('f',f)); % plot plpl = plist('Legends', {'Cdf','Cdf data','Csus','Csus data'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(Cdfr,tffd1,Csusr,tffd2,plpl) %% Actuation TFs % get transfer functions from data tffd1 = ltfe(ac1,acomm1); tffd1.simplifyYunits; tffd2 = ltfe(acd,acommd); tffd2.simplifyYunits; % TAU_th = 0.1; % s - time constant of thrusters actuation % DELTAT_Th = 0.315; % s - delay introduced to command the force to thrusters system % % TAU_el = 0.01; % s - time constant of electrostatic actuation % DELTAT_el = 0.305; % s - delay introduced to command the force to electrostatic actuators % Get expected transfer functions ThActr = ao(plist('fsfcn', '10.*(1./(1 + (2.*pi.*1i.*f)*0.1)).*(1./(2.*pi.*1i.*f)).*(exp(-(2.*pi.*1i.*f).*0.315)-exp(-(2.*pi.*1i.*f).*(0.315+0.1)))', 'f', f)); ElActr = ao(plist('fsfcn', '10.*(1./(1 + (2.*pi.*1i.*f)*0.01)).*(1./(2.*pi.*1i.*f)).*(exp(-(2.*pi.*1i.*f).*0.305)-exp(-(2.*pi.*1i.*f).*(0.305+0.1)))', 'f', f)); % plot plpl = plist('Legends', {'Thrusters','Thrusters data','Electrostatic','Electrostatic data'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(ThActr,tffd1,ElActr,tffd2,plpl) %% Full model of acceleration noise % get mdc1 ifo noise psd models CSD = get_2D_test_obj_tf_psd(f); % free dynamics FD11 = ao(plist('fsfcn', '(2.*pi.*1i.*f).^2 + -1.3e-6', 'f', f)); FD21 = ao(plist('fsfcn', '-(-1e-4).*(2.*pi.*1i.*f).^2 + (-2e-6) - (-1.3e-6) - (-1e-4)*(-2e-6)', 'f', f)); FD22 = ao(plist('fsfcn', '-(-1e-4).*(2.*pi.*1i.*f).^2 + (-2e-6) - (-1.3e-6) - (-1e-4)*(-2e-6) + (2.*pi.*1i.*f).^2 + (-2e-6)', 'f', f)); Cdfr = resp(Cdf,plist('f',f)); Csusr = resp(Csus,plist('f',f)); ThActr = ao(plist('fsfcn', '10.*(1./(1 + (2.*pi.*1i.*f)*0.1)).*(1./(2.*pi.*1i.*f)).*(exp(-(2.*pi.*1i.*f).*0.315)-exp(-(2.*pi.*1i.*f).*(0.315+0.1)))', 'f', f)); ElActr = ao(plist('fsfcn', '10.*(1./(1 + (2.*pi.*1i.*f)*0.01)).*(1./(2.*pi.*1i.*f)).*(exp(-(2.*pi.*1i.*f).*0.305)-exp(-(2.*pi.*1i.*f).*(0.305+0.1)))', 'f', f)); TF11 = FD11 + Cdfr.*ThActr; TF22 = FD22 + Csusr.*ElActr; Acc1 = (2/fs).*TF11.*CSD(1,1).*conj(TF11); Accd = (2/fs).*(FD21.*CSD(2,1).*conj(FD21) + TF22.*CSD(2,2).*conj(TF22)); % plot plpl = plist('Legends', {'Ch1 data','Ch1','Ch12 data','Ch12'},... 'LineStyles', {'', '--', '', '--'},'LineWidths',{'All',3}); iplot(a1xx,abs(Acc1),adxx,abs(Accd),plpl)