Mercurial > hg > ltpda
view m-toolbox/test/test_ao_bilinfit.m @ 27:29276498ebdb database-connection-manager
Remove LTPDARepositoryManager implementation
* * *
Remove GUI helper
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% Test ao/bilinfit for: % - functionality % - against lscov % % M Hueller and D Nicolodi 07-01-10 % % $Id: test_ao_bilinfit.m,v 1.5 2010/05/07 14:04:42 nicolodi Exp $ % function test_ao_bilinfit() %% test bilinfit vs lscov disp(' ************** '); disp('Example with combination of noise terms'); disp(' '); fs = 10; nsecs = 10; x1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); x2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'T')); n = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); c = [ao(1,plist('yunits','m/T')) ao(2,plist('yunits','m/T'))]; y = c(1)*x1 + c(2)*x2 + n; y.simplifyYunits; % Get a fit for c, using lscov (no constant term) disp('Using ao/lscov, no constant term'); disp(' '); p_lscov = lscov(x1, x2, y); disp(' '); p_lscov.y disp(' '); % do linear combination yfit_lscov = lincom(x1, x2, p_lscov); % Get a fit for c, using bilinfit disp('Using ao/bilinfit'); disp(' '); p_b = bilinfit(x1, x2, y); disp(' '); p_b.y disp(' '); disp(' ************** '); % do linear combination: use direct sum yfit_b1 = simplifyYunits(x1 * find(p_b, 'P1') + x2 * find(p_b, 'P2') + find(p_b, 'P3')); % do linear combination: use eval yfit_b2 = p_b.eval(plist('Xdata', {x1, x2})); % Plot (compare data with fit) iplot(y, yfit_lscov, yfit_b1, yfit_b2, plist('Linestyles', {'all','-'})) %% test with uncertainties fprintf('\n\n\n'); fs = 1; nsecs = 50; x1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'C')); x2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); n = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'N')); c = ao(plist('xvals', x1.x, 'yvals', ones(size(x1.y)), 'type', 'tsdata')); b = [ao(1,plist('yunits','N/C')) ao(2,plist('yunits','N/m'))]; y = b(1)*x1 + b(2)*x2 + n; y.simplifyYunits(); p_m = lscov(x1, x2, c, y, plist('weights', ao(plist('vals', 1./(ones(size(x1.x))))))); fprintf('AO LSCOV: Fit results: A = %f +/- %f, B = %f +/- %f, Y0 = %f +/- %f\n', ... p_m.y(1), p_m.dy(1)./sqrt(find(p_m.procinfo, 'mse')), ... p_m.y(2), p_m.dy(2)./sqrt(find(p_m.procinfo, 'mse')), ... p_m.y(3), p_m.dy(3)./sqrt(find(p_m.procinfo, 'mse'))); % do linear combination: using linear combination yfit1 = simplifyYunits(x1 * find(p_m, 'C1') + x2 * find(p_m, 'C2') + find(p_m, 'C3')); % do linear combination: using eval yfit2 = p_m.eval(plist('Xdata',{x1, x2, c})); % Plot (compare data with fit) iplot(y, yfit1, yfit2, plist('Linestyles', {'-','--'})) fprintf('UTN BILINFIT:\n'); try [p, perr] = bilinfit(y.y, x1.y, x2.y, ones(size(x1.x))); catch err disp(err.message); disp('UTN method bilinfit.m for double not available'); end [x,stdx,mse] = lscov([c.y, x1.y, x2.y], y.y, 1./(ones(size(x1.x)))); fprintf('M LSCOV: Fit results: A = %f +/- %f, B = %f +/- %f, Y0 = %f +/- %f\n', ... x(2), stdx(2)*sqrt(1/mse), ... x(3), stdx(3)*sqrt(1/mse), ... x(1), stdx(1)*sqrt(1/mse)); p_b = bilinfit(x1, x2, y, plist('dy', ao(plist('vals', ones(size(x1.x)), 'yunits', 'N')))); fprintf('BILINFIT: Fit results: A = %f +/- %f, B = %f +/- %f, Y0 = %f +/- %f\n', ... p_b.y(1), p_b.dy(1), ... p_b.y(2), p_b.dy(2), ... p_b.y(3), p_b.dy(3)); %% very simple test x1 = ao(plist('xvals', [1 2 3], 'yvals', [1 2 3])); x2 = ao(plist('xvals', [1 2 3], 'yvals', [6 4 7])); y = x1 + x2; c = ao(plist('xvals', x1.x, 'yvals', ones(size(x1.y)), 'type', 'tsdata')); % Fit with UTN double/bilinfit fprintf('UTN BILINFIT:\n'); try [p, perr] = bilinfit(y.y, x1.y, x2.y, ones(size(x1.x))); catch err disp(err.message); disp('UTN method bilinfit.m for double not available'); end % Fit with Matlab lscov [x,stdx,mse] = lscov([c.y, x1.y, x2.y], y.y, 1./(ones(size(x1.x)))); fprintf('M LSCOV: Fit results: A = %f +/- %f, B = %f +/- %f, Y0 = %f +/- %f\n', ... x(2), stdx(2)*sqrt(1/mse), ... x(3), stdx(3)*sqrt(1/mse), ... x(1), stdx(1)*sqrt(1/mse)); % Fit with LTPDA ao/bilinfit [x] = bilinfit(x1, x2, y, plist('dy', ao(plist('vals', ones(size(x1.x)))))); fprintf('BILINFIT: Fit results: A = %f +/- %f, B = %f +/- %f, Y0 = %f +/- %f\n', ... x.y(1), x.dy(1), ... x.y(2), x.dy(2), ... x.y(3), x.dy(3)); %% More tests about format of inputs %% Make fake AO nsecs = 100; fs = 10; unit_list = unit.supportedUnits; u1 = unit(cell2mat(utils.math.randelement(unit_list,1))); u2 = unit(cell2mat(utils.math.randelement(unit_list,1))); u3 = unit(cell2mat(utils.math.randelement(unit_list,1))); pl1 = plist('nsecs', nsecs, 'fs', fs, ... 'tsfcn', 'randn(size(t))', ... 'yunits', u1); pl2 = plist('nsecs', nsecs, 'fs', fs, ... 'tsfcn', 'randn(size(t))', ... 'yunits', u2); pl3 = plist('nsecs', nsecs, 'fs', fs, ... 'tsfcn', 'randn(size(t))', ... 'yunits', u3); x1 = ao(pl1); x2 = ao(pl2); x3 = ao(pl3); n = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs, 'yunits', 'm')); c = [ao(1,plist('yunits', unit('m')/u1)) ao(2,plist('yunits', unit('m')/u2)) ao(3,plist('yunits', unit('m')/u3))]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; y.simplifyYunits; %% Fit with bilinfit p11 = bilinfit(x1, x2, x3, y, plist(... )); p12 = bilinfit(x1, x2, x3, y, plist(... 'dy', 0.1 ... )); p22 = bilinfit(x1, x2, x3, y, plist(... 'dx', [0.1 0.1 0.1], ... 'dy', 0.1, ... 'P0', [0 0 0 0])); p13 = bilinfit(x1, x2, x3, y, plist(... 'dy', ao(0.1, plist('yunits', y.yunits)) ... )); p23 = bilinfit(x1, x2, x3, y, plist(... 'dx', [ao(0.1, plist('yunits', x1.yunits)) ... ao(0.1, plist('yunits', x2.yunits)) ... ao(0.1, plist('yunits', x3.yunits))], ... 'dy', ao(0.1, plist('yunits', y.yunits)), ... 'P0', [0 0 0 0])); p14 = bilinfit(x1, x2, x3, y, plist(... 'dy', ao(0.1*ones(size(x1.y)), plist('yunits', y.yunits)) ... )); p24 = bilinfit(x1, x2, x3, y, plist(... 'dx', [ao(0.1*ones(size(x1.x)), plist('yunits', x1.yunits)) ... ao(0.1*ones(size(x2.x)), plist('yunits', x2.yunits)) ... ao(0.1*ones(size(x3.x)), plist('yunits', x3.yunits))], ... 'dy', ao(0.1*ones(size(x1.y)), plist('yunits', y.yunits)), ... 'P0', [0 0 0 0])); p25 = bilinfit(x1, x2, x3, y, plist(... 'dx', [0.1 0.1 0.1], ... 'dy', 0.1, ... 'P0', ao([0 0 0 0]))); p26 = bilinfit(x1, x2, x3, y, plist(... 'dx', [0.1 0.1 0.1], ... 'dy', 0.1, ... 'P0', p11)); %% Compute fit: evaluating pest b11 = p11.eval(plist('XData', {x1, x2, x3})); b12 = p12.eval(x1, x2, x3); b22 = p22.eval(plist('XData', {x1.y, x2.y, x3.y})); b23 = p23.eval(plist('XData', [x1 x2 x3])); b24 = p24.eval(x1, x2, x3); b25 = p25.eval(plist('XData', {x1, x2, x3})); b26 = p26.eval([x1 x2 x3]); end