Mercurial > hg > ltpda
view m-toolbox/test/test_ao_gap_problems.m @ 6:2b57573b11c7 database-connection-manager
Add utils.mysql.execute
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% function show_gap_problem close all mc %% common params ns = 1e4; fs = 100; ts = 1/fs; tf = ns-ts; Ns = ns*fs; nfft = Ns; %% no gaps % p1 = pzmodel(1e-8,[pz(1e-5) pz(1e-5) pz(1e-5) pz(2e-5) pz(2e-5) pz(1) pz(1) pz(1)],... % [ pz(2e-4) pz(2e-4) pz(1e-4) pz(1e-4) pz(1e-4) pz(1e-3) pz(1e-2)]); % p1 = pzmodel(1e-8,[pz(1e-5) pz(2e-5) pz(3e-5) pz(4e-5) pz(5e-5) pz(0.9) pz(1) pz(1.1) pz(1.2) pz(1.3)],... % [ pz(2e-4) pz(3e-4) pz(4e-4) pz(5e-4) pz(1e-4) pz(1e-3) pz(1e-2)]); p1 = pzmodel(0.1,[pz(1e-5) pz(1e-5) pz(1e-5) pz(2e-5) pz(3e-5) pz(4e-5) pz(5e-5) pz(0.9) pz(1) pz(1.1) pz(1.2) pz(1.3)],... [ pz(2e-4) pz(3e-4) pz(4e-4) pz(5e-4) pz(1e-4) pz(1e-3) pz(1e-2)]); % iplot(resp(p1)) p2 = pzmodel(1e-9,[ pz(1e-5) pz(2e-5) pz(3e-5) pz(4e-5) pz(5e-5) pz(0.9) pz(1) pz(1.1) pz(1.2) pz(1.3)],... [ pz(2e-4) pz(3e-4) pz(4e-4) pz(5e-4) pz(1e-4) pz(1e-3) pz(1e-2)]); %% data generation s1 = ssm(p1); s1.modiftimestep(ts); s1.isstable a00hf = s1.simulate(plist('Nsamples', Ns,'noise variable names',{'U>1 '} ,'covariance' , 1, 'return outputs', {'Y>1 '} )); a02hf = ao(p1,ns,fs ); %% plotting data generation results p_hf = plist('Scale', 'ASD', 'Order',1,'Nfft', nfft); ps_hf = plist('Scale', 'ASD', 'Order',1,'Nfft', floor(nfft/3)); % iplot([psd(a00hf,p_hf) resp(p1) psd(a02hf, p_hf)]) %% downsampling dns = true; k = 500; if dns opt = plist('fsout', fs/k); a00 = a00hf.dsmean(opt); a02 = a02hf.dsmean(opt); ns = k*floor(ns/k); fs = fs/k; ts = ts*k; tf = ns-ts; Ns = floor(Ns/k); nfft = Ns; end %% acceleration and spectrum a00hf = a00hf.diff; a00hf = a00hf.diff; a02hf = a02hf.diff; a02hf = a02hf.diff; a00 = a00.diff; a00 = a00.diff; a02 = a02.diff; a02 = a02.diff; p = plist('Scale', 'ASD', 'Order',1,'Nfft', nfft); ps = plist('Scale', 'ASD', 'Order',1,'Nfft', floor(nfft/3)); iplot([resp(p2) psd(a00hf,ps_hf) psd(a02hf, ps_hf) psd(a00,ps) psd(a02, ps)]) %% baseline : periodic gaps 1s / 249s / 400 cycles kick1 = double(~(mod(0:ts:tf, 250)>min(245,250-ts-1) )).'; a1k = ao(tsdata(kick1,fs )); a10 = a00.*a1k; %% pb2 : not so periodic gaps : <dn> = 5s, <Tauk+ taud> = 1/500*sqrt(10/fs) time2 = cumsum(ts*ones(1,Ns) + ts*0.1*randn(1,Ns)); kick2 = double(~(mod(time2, 250)>min(245,250-ts-1) )).'; a2k = ao(tsdata(kick2,fs )); a20 = a00.*a2k; %% pb3 : time series too short : 100 cycles a30 = ao(tsdata(a10.data.y(1:floor(Ns/4)), fs)); p3 = plist('Scale', 'ASD', 'Order',1,'Nfft', floor(nfft/4)); ps3 = plist('Scale', 'ASD', 'Order',1,'Nfft', floor(nfft/20)); %% pb4 : longer gaps : 10s / 230s kick1 = double(~(mod(0:ts:tf, 250)> min(200,250-ts-1) )).'; a4k = ao(tsdata(kick1,fs )); a40 = a00.*a4k; % iplot([psd(a00,p) psd(a10,p) psd(a20,p) psd(a30,p3) psd(a40,p)]) iplot([psd(a00,ps) psd(a10,ps) psd(a20,ps) psd(a30,ps3) psd(a40,ps)]) %% gap-fill all 4 examples tic a10g = a10.gapfillingoptim(p2); t(1)=toc; tic a20g = a20.gapfillingoptim(p2); t(2)=toc; tic a30g = a30.gapfillingoptim(p2); t(3)=toc; tic try a40g = a40.gapfillingoptim(p2); t(4)=toc; a40gworked = true; catch a40gworked = false; end %% plotting again display('time') display(t) if a40gworked pplot1= plist('LineColors',{'r' 'r' 'r' 'b' 'k' 'g ' 'r' 'b' 'k' 'g' } ,'LineStyles', {'-' '-' '-' '-' '-' '-' ':' ':' ':' ':'},'LineWidths', {2 2 1 1 1 1 1 1 1 1}); iplot([abs(resp(p2)) psd(a00,ps) psd(a10,ps) psd(a20,ps) psd(a30,ps3) psd(a40,ps) psd(a10g,ps) psd(a20g,ps) psd(a30g,ps3) psd(a40g,ps)], pplot1) else pplot1= plist('LineColors',{'r' 'r' 'r' 'b' 'k' 'g' 'r' 'b' 'k' } ,'LineStyles', {'-' '-' '-' '-' '-' '-' ':' ':' ':'},'LineWidths', {2 2 1 1 1 1 1 1 1}); iplot([abs(resp(p2)) psd(a00,ps) psd(a10,ps) psd(a20,ps) psd(a30,ps3) psd(a40,ps) psd(a10g,ps) psd(a20g,ps) psd(a30g,ps3) ], pplot1) end