Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/dtfit.m @ 8:2f5c9bd7d95d database-connection-manager
Clarify ltpda_uo.retrieve parameters handling
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% DTFIT fits a discrete model to a frequency response. % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DESCRIPTION: % % Fits a discrete model to a frequency response using relaxed z-domain % vector fitting algorithm [1 - 3]. Model function is expanded in % partial fractions: % % r1 rN % f(z) = ----------- + ... + ----------- + d % 1-p1*z^{-1} 1-pN*z^{-1} % % CALL: % % [res,poles,dterm,mresp,rdl] = dtfit(y,f,poles,weight,fitin) % % INPUTS: % % - y: Is a vector wuth the frequency response data. % - f: Is the frequency vector in Hz. % - poles: are a set of starting poles. % - weight: are a set of weights used in the fitting procedure. % - fitin: is a struct containing fitting options and parameters. fitin % fields are: % - fitin.stable = 0; fit without forcing poles to be stable. % - fitin.stable = 1; force poles to be stable flipping unstable % poles in the unit circle. z -> 1/z*. % - fitin.dterm = 0; fit with d = 0. % - fitin.dterm = 1; fit with d different from 0. % - fitin.fs = fs; input the sampling frequency in Hz (default value % is 1 Hz). % - fitin.polt = 0; fit without plotting results. % - fitin.plot = 1; plot fit results. % % OUTPUT: % % - res: vector or residues. % - poles: vector of poles. % - dterm: direct term d. % - mresp: frequency response of the fitted model % - rdl: residuals y - mresp % % REFERENCES: % % [1] B. Gustavsen and A. Semlyen, "Rational approximation of frequency % domain responses by Vector Fitting", IEEE Trans. Power Delivery % vol. 14, no. 3, pp. 1052-1061, July 1999. % [2] B. Gustavsen, "Improving the Pole Relocating Properties of Vector % Fitting", IEEE Trans. Power Delivery vol. 21, no. 3, pp. % 1587-1592, July 2006. % [3] Y. S. Mekonnen and J. E. Schutt-Aine, "Fast broadband % macromodeling technique of sampled time/frequency data using % z-domain vector-fitting method", Electronic Components and % Technology Conference, 2008. ECTC 2008. 58th 27-30 May 2008 pp. % 1231 - 1235. % % NOTE: % % This function cannot handle more than one frequency response per time % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % VERSION: $Id: dtfit.m,v 1.2 2008/10/24 06:19:23 hewitson Exp $ % % HISTORY: 12-09-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [res,poles,dterm,mresp,rdl] = dtfit(y,f,poles,weight,fitin) %% Collecting inputs % Default input struct defaultparams = struct('stable',0, 'dterm',0, 'fs',1, 'plot',0); names = {'stable','dterm','fs','plot'}; % collecting input and default params if ~isempty(fitin) for jj=1:length(names) if isfield(fitin, names(jj)) defaultparams.(names{1,jj}) = fitin.(names{1,jj}); end end end stab = defaultparams.stable; % Enforce pole stability is is 1 dt = defaultparams.dterm; % 1 to fit with direct term fs = defaultparams.fs; % sampling frequency plotting = defaultparams.plot; % set to 1 if plotting is required %% Inputs in column vectors [a,b] = size(y); if a < b % shifting to column y = y.'; end [a,b] = size(f); if a < b % shifting to column f = f.'; end [a,b] = size(poles); if a < b % shifting to column poles = poles.'; end clear w w = weight; [a,b] = size(w); if a < b % shifting to column w = w.'; end N = length(poles); % Model order if dt dl = 1; % Fit with direct term else dl = 0; % Fit without direct term end % definition of z z = cos(2.*pi.*f./fs)+1i.*sin(2.*pi.*f./fs); Nz = length(z); %% Normalizing y y = y./z; %% Marking complex and real poles % cindex = 1; pole is complex, next conjugate pole is marked with cindex % = 2. cindex = 0; pole is real cindex=zeros(N,1); for m=1:N if imag(poles(m))~=0 if m==1 cindex(m)=1; else if cindex(m-1)==0 || cindex(m-1)==2 cindex(m)=1; cindex(m+1)=2; else cindex(m)=2; end end end end %% Initializing the augmented problem matrices % Matrix initialinzation BA = zeros(Nz+1,1); AA = zeros(Nz+1,2*N+dl+1); Ak=zeros(Nz,N+1); % Defining Ak % for jj = 1:N % if cindex(jj) == 1 % conjugate complex couple of poles % Ak(:,jj) = (1./(1-poles(jj)./z))+(1./(1-poles(jj+1)./z)); % Ak(:,jj+1) = (j./(1-poles(jj)./z))-(j./(1-poles(jj+1)./z)); % elseif cindex(jj) == 0 % real pole % Ak(:,jj) = 1./(1-poles(jj)./z); % end % end for jj = 1:N if cindex(jj) == 1 % conjugate complex couple of poles Ak(:,jj) = (1./(z-poles(jj)))+(1./(z-poles(jj+1))); Ak(:,jj+1) = (j./(z-poles(jj)))-(j./(z-poles(jj+1))); elseif cindex(jj) == 0 % real pole Ak(:,jj) = 1./(z-poles(jj)); end end Ak(1:Nz,N+1) = ones(Nz,1); for m=1:N+dl % left columns AA(1:Nz,m)=w.*Ak(1:Nz,m); end if dt AA(1:Nz,N+dl)=w./z; end for m=1:N+1 %Rightmost blocks AA(1:Nz,N+dt+m)=-w.*(Ak(1:Nz,m).*y); end % Scaling factor clear sc sc = norm(w.*y)/Nz; % setting the last row of AA and BA for the relaxion condition for qq = 1:N+1 AA(Nz+1,N+dl+qq) = real(sc*sum(Ak(:,qq))); end AA = [real(AA);imag(AA)]; % AAstr1 = AA; % storing % Last element of the solution vector BA(Nz+1) = Nz*sc; % solving for real and imaginary part of the solution vector nBA = [real(BA);imag(BA)]; % Normalization factor nf = zeros(2*N+dl+1,1); for pp = 1:2*N+dl+1 nf(pp,1) = norm(AA(:,pp),2); % Euclidean norm AA(:,pp) = AA(:,pp)./nf(pp,1); % Normalization end %% Solving augmented problem % XA = pinv(AA)*nBA; % XA = inv((AA.')*AA)*(AA.')*nBA; % XA = AA.'*AA\AA.'*nBA; XA = AA\nBA; XA = XA./nf; % renormalization %% Finding zeros of sigma lsr = XA(N+dl+1:2*N+dl,1); % collect the least square results Ds = XA(end); % direct term of sigma % Real poles have real residues, complex poles have comples residues rs = zeros(N,1); for tt = 1:N if cindex(tt) == 1 % conjugate complex couple of poles rs(tt,1) = lsr(tt)+1i*lsr(tt+1); rs(tt+1,1) = lsr(tt)-1i*lsr(tt+1); elseif cindex(tt) == 0 % real pole rs(tt,1) = lsr(tt); end end % [snum, sden] = residuez(rs,poles,Ds); % % % ceking for numerical calculation errors % for jj = 1:length(snum) % if ~isequal(imag(snum(jj)),0) % snum(jj)=real(snum(jj)); % end % end % % % Zeros of sigma are poles of F % szeros = roots(snum); DPOLES = diag(poles); B = ones(N,1); C = rs.'; for kk = 1:N if cindex(kk) == 1 DPOLES(kk,kk)=real(DPOLES(kk,kk)); DPOLES(kk,kk+1)=imag(DPOLES(kk,kk)); DPOLES(kk+1,kk)=-1*imag(DPOLES(kk,kk)); DPOLES(kk+1,kk+1)=real(DPOLES(kk,kk)); B(kk,1) = 2; B(kk+1,1) = 0; C(1,kk) = real(C(1,kk)); C(1,kk+1) = imag(C(1,kk)); end end H = DPOLES-B*C/Ds; szeros = eig(H); %% Ruling out unstable poles % This option force the poles of f to stay inside the unit circle if stab unst = abs(szeros) > 1; szeros(unst) = 1./conj(szeros(unst)); end N = length(szeros); %% Separating complex poles from real poles and ordering rnpoles = []; inpoles = []; for tt = 1:N if imag(szeros(tt)) == 0 % collecting real poles rnpoles = [rnpoles; szeros(tt)]; else % collecting complex poles inpoles = [inpoles; szeros(tt)]; end end % Sorting complex poles in order to have them in the expected order a+jb % and a-jb a>0 b>0 inpoles = sort(inpoles); npoles = [rnpoles;inpoles]; npoles = npoles - 2.*1i.*imag(npoles); %% Marking complex and real poles cindex=zeros(N,1); for m=1:N if imag(npoles(m))~=0 if m==1 cindex(m)=1; else if cindex(m-1)==0 || cindex(m-1)==2 cindex(m)=1; cindex(m+1)=2; else cindex(m)=2; end end end end %% Initializing direct problem % Matrix initialinzation B = w.*y; AD = zeros(Nz,N+dl); Ak=zeros(Nz,N+dl); % Defining Ak % for jj = 1:N % if cindex(jj) == 1 % conjugate complex couple of poles % Ak(:,jj) = (1./(1-npoles(jj)./z))+(1./(1-npoles(jj+1)./z)); % Ak(:,jj+1) = (j./(1-npoles(jj)./z))-(j./(1-npoles(jj+1)./z)); % elseif cindex(jj) == 0 % real pole % Ak(:,jj) = 1./(1-npoles(jj)./z); % end % end for jj = 1:N if cindex(jj) == 1 % conjugate complex couple of poles Ak(:,jj) = (1./(z-npoles(jj)))+(1./(z-npoles(jj+1))); Ak(:,jj+1) = (1i./(z-npoles(jj)))-(1i./(z-npoles(jj+1))); elseif cindex(jj) == 0 % real pole Ak(:,jj) = 1./(z-npoles(jj)); end end if dt % Ak(1:Nz,N+dl) = ones(Nz,1); % considering the direct term Ak(1:Nz,N+dl) = 1./z; end % Defining AD for m=1:N+dl AD(1:Nz,m)=w.*Ak(1:Nz,m); end AD = [real(AD);imag(AD)]; nB = [real(B);imag(B)]; % Normalization factor nf = zeros(N+dl,1); for pp = 1:N+dl nf(pp,1) = norm(AD(:,pp),2); % Euclidean norm AD(:,pp) = AD(:,pp)./nf(pp,1); % Normalization end %% Solving direct problem % XD = inv((AD.')*AD)*(AD.')*nB; % XD = AD.'*AD\AD.'*nB; % XD = pinv(AD)*nB; XD = AD\nB; XD = XD./nf; % Renormalization %% Final residues and poles of f if dt lsr = XD(1:end-1); % Fitting with direct term else lsr = XD(1:end); % Fitting without direct term end res = zeros(N,1); % Real poles have real residues, complex poles have comples residues for tt = 1:N if cindex(tt) == 1 % conjugate complex couple of poles res(tt) = lsr(tt)+1i*lsr(tt+1); res(tt+1) = lsr(tt)-1i*lsr(tt+1); elseif cindex(tt) == 0 % real pole res(tt) = lsr(tt); end end clear poles poles = npoles; if dt dterm = XD(end); else dterm = 0; end %% Calculating response and residual % freq resp of the fit model r = res; p = poles; d = dterm; Nf = length(f); N = length(p); % Defining normalized frequencies fn = f./fs; rsp = zeros(Nf,1); indx = 0:length(d)-1; for ii = 1:Nf for jj = 1:N rsptemp = exp(1i*2*pi*fn(ii))*r(jj)/(exp(1i*2*pi*fn(ii))-p(jj)); rsp(ii) = rsp(ii) + rsptemp; end % Direct terms response rsp(ii) = rsp(ii) + sum(((exp((1i*2*pi*f(ii))*ones(length(d),1))).^(-1.*indx)).*d); end % Model response mresp = rsp; % Residual yr = y.*z; rdl = yr - mresp; %% Plotting response if plotting figure(1) subplot(2,1,1); loglog(fn,abs(yr),'k') hold on loglog(fn,abs(mresp),'r') loglog(fn,abs(rdl),'b') xlabel('Normalized Frequency [f/fs]') ylabel('Amplitude') legend('Original', 'DTFIT','Residual') hold off subplot(2,1,2); semilogx(fn,angle(yr),'k') hold on semilogx(fn,angle(mresp),'r') xlabel('Normalized Frequency [f/fs]') ylabel('Phase [Rad]') legend('Original', 'DTFIT') hold off end end