Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/mhsample_td.m @ 8:2f5c9bd7d95d database-connection-manager
Clarify ltpda_uo.retrieve parameters handling
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Metropolis algorithm % % M Nofrarias 15-06-09 % % $Id: mhsample_td.m,v 1.1 2010/11/26 13:48:48 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function smpl = mhsample_td(model,in,out,cov,number,limit,parnames,Tc,xi,xo,search,jumps,parplot,dbg_info,inNames,outNames,Noise,cutbefore,cutafter) import utils.const.* % compute mean and range mn = mean(limit); range = diff(limit); % initialize acc = []; nacc = 1; nrej = 1; loop = 0; oldacc = 0; oldrej = 0; chgsc = 0; nparnames = length(parnames); % switch depending on model class (initial likelihood) switch class(model) case 'matrix' % loglk1 = utils.math.loglikehood_matrix(xo,in,out,nse,model,parnames); % loglk1 = utils.math.loglikehood_matrix(xo,in,out,nse,model,parnames,inModel,outModel); case 'smodel' % loglk1 = utils.math.loglikehood(xo,in,out,nse,model,parnames); case 'ssm' loglk1 = utils.math.loglikehood_ssm_td(xo,in,out,parnames,model,inNames,outNames,Noise,'cutbefore',cutbefore,'cutafter',cutafter); otherwise error('### Model must be either from the ''smodel'' or the ''ssm'' class. Please check the inputs') end % accept the first sample if no search active if ~search smpl(1,:) = xo; nacc = 1; else smpl = []; nacc = 0; end nrej = 0; utils.helper.msg(msg.IMPORTANT, 'Starting Monte Carlo sampling', mfilename('class'), mfilename); hjump = 0; % main loop while(nacc<number) % jumping criterion during search phase % - 2-sigma by default % - 10-sigma jumps at mod(10) samples % - 100-sigma jumps at mod(25) samples % - 1000-sigma jumps at mod(100) samples if search if nacc <= Tc(1) if(mod(nacc,10) == 0 && mod(nacc,25) ~= 0 && mod(nacc,100) ~= 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(2)^2*cov); elseif(mod(nacc,25) == 0 && mod(nacc,100) ~= 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(3)^2*cov); elseif(mod(nacc,100) == 0 && hjump ~= 1) hjump = 1; xn = mvnrnd(xo,jumps(4)^2*cov); % xn = xo + range/2+rand(size(xo)); else hjump = 0; xn = mvnrnd(xo,jumps(1)^2*cov); end else xn = mvnrnd(xo,cov); end else xn = mvnrnd(xo,cov); end % check if out of limits if( any(xn < limit(1,:)) || any(xn > limit(2,:))) logprior = inf; loglk2 = inf; betta = inf; else % compute annealing if ~isempty(Tc) if nacc <= Tc(1) betta = 1/2 * 10^(-xi*(1-Tc(1)/Tc(2))); elseif Tc(1) < nacc && nacc <= Tc(2) betta = 1/2 * 10^(-xi*(1-nacc/Tc(2))); else betta = 1/2; end else betta = 1/2; end % switch depending on model class (new likelihood) switch class(model) case 'matrix' % loglk2 = utils.math.loglikehood_matrix(xn,in,out,nse,model,parnames,inModel,outModel); case 'smodel' % loglk2 = utils.math.loglikehood(xn,in,out,nse,model,parnames); case 'ssm' loglk2 = utils.math.loglikehood_ssm_td(xn,in,out,parnames,model,inNames,outNames,Noise,'cutbefore',cutbefore,'cutafter',cutafter); otherwise error('### Model must be either from the ''smodel'' or the ''ssm'' class. Please check the inputs') end end % likelihood ratio logr = betta*(loglk2 - loglk1) ; % decide if sample is accepted or not if logr < 0 xo = xn; nacc = nacc+1; smpl(nacc,:) = xn; loglk1 =loglk2; if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('acc.\t loglik: %d -> %d betta: %d ratio: %d',loglk1,loglk2,betta,logr), mfilename('class'), mfilename); end elseif rand(1) > (1 - exp(-logr)) xo = xn; nacc = nacc+1; smpl(nacc,:) = xn; loglk1 =loglk2; if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('acc.\t loglik: %d -> %d betta: %d ratio: %d',loglk1,loglk2,betta,logr), mfilename('class'), mfilename); end else nrej = nrej+1; if dbg_info utils.helper.msg(msg.IMPORTANT, sprintf('rej.\t loglik: %d -> %d betta: %d ratio: %d',loglk1,loglk2,betta,logr), mfilename('class'), mfilename); end end % display and save if(mod(nacc,100) == 0 && nacc ~= oldacc) updacc = nacc-oldacc; updrej = nrej-oldrej; ratio(nacc/10,:) = updacc/(updacc+updrej); utils.helper.msg(msg.IMPORTANT, sprintf('accepted: %d rejected : %d acc. rate: %4.2f',nacc,updrej,ratio(end)), mfilename('class'), mfilename); for i = 1:numel(parnames) fprintf('### Parameters: %s = %d \n',parnames{i},xn(i)) end oldacc = nacc; oldrej = nrej; save('chain.txt','smpl','-ASCII') save('acceptance.txt','ratio','-ASCII') end % plot if ((mod(nacc,100) == 0) && (nacc ~= 0) && ~isempty(parplot)) for i = 1:numel(parplot) figure(parplot(i)) plot(smpl(:,parplot(i))) end end end end