Mercurial > hg > ltpda
view m-toolbox/classes/+utils/@math/startpoles.m @ 8:2f5c9bd7d95d database-connection-manager
Clarify ltpda_uo.retrieve parameters handling
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% STARTPOLES defines starting poles for fitting procedures ctfit, dtfit. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % DESCRIPTION % % Defines the starting poles for the fitting procedure with ctfit or % dtfit. Starting poles definition process is different for s-domain % and z-domain. % s-domain identification: % Starting poles can be real or complex in conjugate couples. Real % poles are chosen on the [-2*pi*f(1),-2*pi*f(end)] intervall. Complex poles can % be defined with the real and imaginary parts logspaced or linespaced % on the intervall [2\pi f(1),2\pi f(end)]. Ratio between real and % imaginary part can be setted by the user. % z-domain identification: % Starting poles can be real or come in complex conjugate couples. Real % poles are chosen on the [-1,1] intervall. Complex poles are % chosen inside the unit circle as: % \alfa e^{j\pi\theta} % where \theta is linespaced inside the intervall [0,2\pi]. In this % case two different methods are used: the first method define angles % as \theta = linspace(0,pi,N/2+1), then take out the first element and % construct the complex conjugate couples. If N is odd the first % element is added as real pole. With this method the last two % conjugates poles have a real part very similar to that of the real % pole. This may generate problems so a second method is implemented in % which the angle are generated as \theta = linspace(0,pi,N/2+2). Then % the first and the last elements of the set are taken out and the % first element is used only for N odd. The last element instead is % never used. This allow to have well distributed poles on the unit % circle. The amplitude parameter \alfa can be set by the user. % % CALL: % % spoles = startpoles(order,f,params) % % INPUT: % % order: is the function order, ie. the number of desired poles % f: is the frequency vector in Hz % params: is a struct with the setting parameters % % params.type = 'CONT' --> Output a set of poles for s-domain % identification % params.type = 'DISC' --> Output a set of poles for z-domain % identification % % params.spolesopt = 1 --> generate linear spaced real poles on % the intervall [-2*pi*f(1),-2*pi*f(end)] for s-domain and [-1,1] for z-domain. % params.spolesopt = 2 --> in case of s-domain generates logspaced % complex conjugates poles. In case of z-domain generates complex % conjugates poles with \theta = linspace(0,pi,N/2+1). % params.spolesopt = 3 --> in case of s-domain generates linespaced % complex conjugates poles. In case of z-domain generates complex % conjugates poles with \theta = linspace(0,pi,N/2+2). We advice to % make use of this option for z-domain identification. % % params.pamp = # --> s-domain: set the ratio \alfa/\beta between % poles real and imaginary parts. Adviced value is 0.01. % params.pamp = # --> z-domain: set the amplitude of the poles. % Adviced value is 0.98. % % OUTPUT: % % spoles: is the set of starting poles % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % VERSION: $Id: startpoles.m,v 1.6 2010/04/29 09:00:00 luigi Exp $ % HISTORY: 08-10-2008 L Ferraioli % Creation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function spoles = startpoles(order,f,params) % Default input struct defaultparams = struct('spolesopt',1, 'type','CONT', 'pamp', 0.98); names = {'spolesopt', 'type', 'pamp'}; % collecting input and default params if ~isempty(params) for jj=1:length(names) if isfield(params, names(jj)) defaultparams.(names{1,jj}) = params.(names{1,jj}); end end end type = defaultparams.type; spolesopt = defaultparams.spolesopt; pamp = defaultparams.pamp; N = order; % switching between continuous and discrete switch type case 'CONT' switch spolesopt case 0 disp(' Using external starting poles') case 1 % real starting poles spoles = -1.*2.*pi.*linspace(f(1),f(end),N).'; case 2 % complex logspaced starting poles if f(1)==0 bet=2.*pi.*logspace(log10(f(2)),log10(f(end)),N/2); else bet=2.*pi.*logspace(log10(f(1)),log10(f(end)),N/2); end spoles=[]; for n=1:length(bet) alf=-bet(n)*pamp; spoles=[spoles;(alf-1i*bet(n));(alf+1i*bet(n))]; end if (N-2*floor(N/2)) ~= 0 % rpl = rand(1,1); % if rpl > 0 % rpl = -1*rpl; % end rpl = -1; spoles = [rpl; spoles]; end case 3 % complex linspaced starting poles bet=linspace(2*pi*f(1),2*pi*f(end),N/2); spoles=[]; for n=1:length(bet) alf=-bet(n)*pamp; spoles=[spoles;(alf-1i*bet(n));(alf+1i*bet(n))]; end if (N-2*floor(N/2)) ~= 0 % rpl = rand(1,1); % if rpl > 0 % rpl = -1*rpl; % end rpl = -1; spoles = [rpl; spoles]; end end case 'DISC' switch spolesopt case 0 disp(' Using external starting poles') case 1 % real starting poles spoles = linspace(-0.99,0.99,N).'; case 2 % complex starting poles ang = linspace(0,pi,N/2+1); spoles=[]; for nn=2:length(ang) spoles=[spoles; exp(1i*ang(nn)); exp(-1i*ang(nn))]; % Taking complex conjugate pairs on the unit circle end if (N-2*floor(N/2)) ~= 0 rpl = exp(1i*ang(1)); spoles = [rpl; spoles]; end spoles = spoles.*pamp; % shifting starting ?poles a little inside the unit circle case 3 % complex starting poles ang = linspace(0,pi,N/2+2); spoles=[]; for nn=2:length(ang)-1 spoles=[spoles; exp(1i*ang(nn)); exp(-1i*ang(nn))]; % Taking complex conjugate pairs on the unit circle end if (N-2*floor(N/2)) ~= 0 rpl = exp(1i*ang(1)); spoles = [rpl; spoles]; end spoles = spoles.*pamp; % shifting starting ?poles a little inside the unit circle end end end