Mercurial > hg > ltpda
view m-toolbox/test/diagnostics/ltpda_arma_freq.m @ 8:2f5c9bd7d95d database-connection-manager
Clarify ltpda_uo.retrieve parameters handling
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
function varargout = ltpda_arma_freq(varargin) % LTPDA_ARMA_FREQ estimates the ARMA parameters of the transfer function % relating an output to an input % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: LTPDA_ARMA_FREQ estimates the ARMA parameters of the % transfer function relating an output to an input time series. The % algorithm uses the IV method to find a set of initial parameters % and then performs an iterative search based on the Optimization % Toolbox. % % CALL: b = ltpda_arma_freq(ax,ay,pl) % % INPUTS: ax - analysis object containig the input time series % ay - analysis object containig the output time series % pl - parameters list % % OUTPUTS: b - cdata type analysis object containing the ARMA % parameters and the residual of the fit % % PARAMETERS: % MaxIter - Maximum number of iterations to be performed by the % iterative search (default 4e2) % MaxFunEvals - Maximum number of function evaluations (default 1e2) % TolX - Tolerance on the estimated parameter (default 1e-6) % TolFun - Tolerance on the evaluated function (default 1e-6) % UpBound - Array of parameters upper bounds for the iterative search % (default is 1 for each parameter) % LowBound - Array of parameters lower bounds for the iterative search % (default is 1 for each parameter) % ARMANum - MA order of the ARMA filter (default 2) % ARMADen - AR order of the ARMA filter (default 1) % % VERSION: $Id: ltpda_arma_freq.m,v 1.1 2008/03/04 12:55:05 miquel Exp $ % % HISTORY: 25-02-2008 M Nofrarias % Creation % % % TODO: - Add parameters errors % - Pass from univariate to multivariate % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Standard history variables ALGONAME = mfilename; VERSION = '$Id: ltpda_arma_freq.m,v 1.1 2008/03/04 12:55:05 miquel Exp $'; CATEGORY = 'SIGPROC'; %% Check if this is a call for parameters if nargin == 1 && ischar(varargin{1}) in = char(varargin{1}); if strcmpi(in, 'Params') varargout{1} = getDefaultPL(); return elseif strcmpi(in, 'Version') varargout{1} = VERSION; return elseif strcmpi(in, 'Category') varargout{1} = CATEGORY; return end end %% Capture input variables names invars = {}; as = []; ps = []; for j=1:nargin invars = [invars cellstr(inputname(j))]; if isa(varargin{j}, 'ao') as = [as varargin{j}]; end if isa(varargin{j}, 'plist') ps = [ps varargin{j}]; end end %% Check plist if isempty(ps) pl = getDefaultPL(); else pl = combine(ps, getDefaultPL); end %% Fourier transform input varialbles Fs=0.65; L=length(xin) NFFT = 2^nextpow2(L); % Next power of 2 from length of y NFFT=length(xin); x_ = fft(xin,NFFT)/L; y_ = fft(yout',NFFT)/L; Px = 2*abs(x_(1:NFFT/2)); % single-sided amplitude spectrum. Py = 2*abs(y_(1:NFFT/2)); % single-sided amplitude spectrum. f = Fs/2*linspace(0,1,NFFT/2)'; %% Iterative search using the Optimization Toolbox % Options for the lsqcurvefit function opt = optimset(... 'MaxIter',find(pl, 'MaxIter'),... 'TolX',find(pl, 'TolXm'),... 'TolFun',find(pl, 'TolFun'),... 'MaxFunEvals',find(pl, 'MaxFunEvals'),... 'Display','off'); % Upper and Lower Bounds for the parameters ub=find(pl,'UpBound'); lb=find(pl,'LowBound'); if isempty(ub) ub=ones(p+q,1); pl = append(pl, param('UpBound', ub)); disp('! Parameters Upper Bound set to 1') end if isempty(lb) lb=-ones(p+q,1); pl = append(pl, param('LowBound', lb)); disp('! Parameters Lower Bound set to -1') end % Call to the Optimization Toolbox function [par,res]=lsqcurvefit(@(par,xdata)filter([par(1:p)],[1 par(p+1:p+q)],xdata),... par0,x,y,lb,ub,opt); %% Build output ao % New output history h = history(ALGONAME, VERSION, pl,[as(1).hist as(2).hist]); h = set(h,'invars', invars); % Make output analysis object b = ao([par; res]); % Name, mfilename, description for this object b = setnh(b,... 'name', ['ARMA param. Input: ' sprintf('%s ', char(invars{1})) ' Output: ' char(invars{2})],... 'mfilename', ALGONAME, ... 'description', find(pl,'description'),... 'hist', h); varargout{1} = b; %% --- FUNCTIONS --- % Get default parameters function plo = getDefaultPL(); disp('* creating default plist...'); plo = plist(); plo = append(plo, param('MaxIter',4e2)); plo = append(plo, param('MaxFunEvals',1e2)); plo = append(plo, param('TolX',1e-6)); plo = append(plo, param('TolFun',1e-6)); plo = append(plo, param('ARMANum',2)); plo = append(plo, param('ARMADen',1)); plo = append(plo, param('fs', 1)); disp('* done.'); % siz=length(Px); % % siz=200; % % xdataf=Px(1:siz)*1e5; % ydataf=Py(1:siz)*1e5; % % xdataf=Px.data.y; % % ydataf=Py.data.y; % global freq % % freq=Px.data.x; % freq =f(1:siz); tic; [x1f,resnorm1f]=... lsqcurvefit(@myfunf,p0,xdataf,ydataf,[-1 -1 -1],[1 1 1],options); elaps=toc % % % %% % % Ff = ((x1f(1)+x1f(2)*exp(-i*2*pi*f/0.65))./(1+x1f(3)*exp(-i*2*pi*f/0.65))); % % F = ((x1(1)+x1(2)*exp(-i*2*pi*f/0.65))./(1+x1(3)*exp(-i*2*pi*f/0.65))); % % % % figure(1) % % hold off % % loglog(Px.data.x,ydataf./xdataf) % % hold % % loglog(Px.data.x,abs(Ff),'k') % % loglog(Px.data.x,abs(F),'m') % % loglog(f,abs((39.6e-3-39.5e-3*exp(-i*2*pi*f/0.65))./(1-0.996*exp(-i*2*pi*f/0.65))),'r') % % % % % % %% % % Fs=18; % Lw=2; % % Ff = ((x1f(1)+x1f(2)*exp(-i*2*pi*f/0.65))./(1+x1f(3)*exp(-i*2*pi*f/0.65))); % F = ((x1(1)+x1(2)*exp(-i*2*pi*f/0.65))./(1+x1(3)*exp(-i*2*pi*f/0.65))); % % figure(1) % set(gca,'Fontsize',Fs) % hold off % loglog(f,Py./Px,'LineWidth',Lw) % hold % % % loglog(f,ydataf,'m') % loglog(f,abs(Ff),'k','LineWidth',Lw) % loglog(f,abs(F),'m','LineWidth',Lw) % % % loglog(f,(x1(1)+x1(2)*exp(-i*2*pi*f/1.32))./(1+x1(3)*exp(-i*2*pi*f/1.32)),'r') % loglog(f,abs((39.6e-3-39.5e-3*exp(-i*2*pi*f/0.65))./(1-0.996*exp(-i*2*pi*f/0.65))),'r') % % legend('Empirical','Freq.domain','Time domain','Analytic') %