Mercurial > hg > ltpda
view m-toolbox/classes/@ao/welch.m @ 30:317b5f447f3e database-connection-manager
Update workspaceBrowser
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% WELCH Welch spectral estimation method. % % [pxx, f, info] = welch(x,type,pl) % [pxx, f, info] = welch(x,y,type,pl) % % INPUTS: x - input analysis objects % y - input analysis objects % type - type of spectrum: % 'psd' - compute Power Spectral Denstiy (PSD) % 'ms' - compute Mean-square (Power) Spectrum (MS) % 'cpsd' - compute cross-spectral density % 'tfe' - estimate transfer function between inputs % 'mscohere' - estimate magnitude-squared cross-coherence % 'cohere' - estimate complex cross-coherence % pl - input parameter list % % PARAMETERS: 'Win' - a specwin window object [default: Kaiser -200dB psll] % 'Olap' - segment percent overlap [default: taken from window function] % 'Nfft' - number of samples in each fft [default: length of input data] % 'Scale' - one of % 'ASD' - amplitude spectral density % 'PSD' - power spectral density [default] % 'AS' - amplitude spectrum % 'PS' - power spectrum % * applies only to spectrum 'Type' 'psd' % 'Order' - order of segment detrending % -1 - no detrending % 0 - subtract mean [default] % 1 - subtract linear fit % N - subtract fit of polynomial, order N % % Copied directly from MATLAB and extended to do segment-wise detrending, % compute transfer function variance and to take a plist input % % M Hewitson 08-05-08 % % $Id: welch.m,v 1.34 2011/03/14 16:06:05 mauro Exp $ % % Author(s): P. Pacheco % Copyright 1988-2006 The MathWorks, Inc. % $Revision: 1.34 $ $Date: 2011/03/14 16:06:05 $ % References: % [1] Petre Stoica and Randolph Moses, Introduction To Spectral % Analysis, Prentice-Hall, 1997, pg. 15 % [2] Monson Hayes, Statistical Digital Signal Processing and % Modeling, John Wiley & Sons, 1996. % [3] JS Bendat and AG Piersol, Engineering applications of correlation % and spectral analysis, John Wiley & Sons, 1993. % Compute the periodogram power spectrum of each segment and average always % compute the whole power spectrum, we force Fs = 1 to get a PS not a PSD. function varargout = welch(varargin) if nargin == 3 a = varargin{1}; esttype = varargin{2}; pl = varargin{3}; x = a.data.y; inunits = a.data.yunits; else a = varargin{1}; b = varargin{2}; esttype = varargin{3}; pl = varargin{4}; if a.data.fs ~= b.data.fs error('### Two time-series have different sample rates.'); end inunits = b.data.yunits / a.data.yunits; x = {a.data.y, b.data.y}; end % Parse inputs win = find(pl, 'Win'); nfft = find(pl, 'Nfft'); olap = find(pl, 'Olap')/100; scale = find(pl, 'scale'); Xolap = round(olap*nfft); fs = a.data.fs; order = find(pl, 'order'); [x,M,isreal_x,y,Ly,win,winName,winParam,noverlap,k,L,options] = ... ao.welchparse(x,esttype,win.win, Xolap, nfft, fs); % Initialize Sxx = zeros(options.nfft,1); % Frequency vector was specified, return and plot two-sided PSD freqVectorSpecified = false; nrow = 1; if length(options.nfft) > 1, freqVectorSpecified = true; [ncol,nrow] = size(options.nfft); end % Compute the periodogram power spectrum of each segment and average always % compute the whole power spectrum, we force Fs = 1 to get a PS not a PSD. % Initialize Mnxx = 0; Mn2xx = 0; if freqVectorSpecified, Sxx = zeros(length(options.nfft),1); else Sxx = zeros(options.nfft,1); end range = options.range; LminusOverlap = L-noverlap; xStart = 1:LminusOverlap:k*LminusOverlap; xEnd = xStart+L-1; switch lower(esttype) case {'ms','psd'} for ii = 1:k, if order < 0 seg = x(xStart(ii):xEnd(ii)); else [seg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); end [Sxxk,w] = ao.computeperiodogram(seg,win,... options.nfft,esttype,options.Fs); % Welford's algorithm for updating mean and variance if ii == 1 Mnxx = Sxxk; else Qxx = Sxxk - Mnxx; Mnxx = Mnxx + Qxx/ii; Mn2xx = Mn2xx + Qxx.*(Sxxk - Mnxx); end end Sxx = Mnxx; if k == 1 Svxx = []; else Svxx = Mn2xx/(k-1)/k; end case 'cpsd' for ii = 1:k, if order < 0 xseg = x(xStart(ii):xEnd(ii)); else [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); end if order < 0 yseg = y(xStart(ii):xEnd(ii)); else [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order); end [Sxxk,w] = ao.computeperiodogram({xseg,... yseg},win,options.nfft,esttype,options.Fs); % Welford's algorithm to update mean and variance Qxx = Sxxk - Mnxx; Mnxx = Mnxx +Qxx/ii; Mn2xx = Mn2xx + abs(Qxx.*conj(Sxxk - Mnxx)); end Sxx = Mnxx; if k ==1 Svxx = []; else Svxx = Mn2xx/(k-1)/k; end case 'tfe' % compute transfer function Sxy = zeros(options.nfft,1); % Initialize Syy = zeros(options.nfft,1); % Initialize for ii = 1:k, if order < 0 xseg = x(xStart(ii):xEnd(ii)); else [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); end if order < 0 yseg = y(xStart(ii):xEnd(ii)); else [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order); end [Sxxk,w] = ao.computeperiodogram(xseg,... win,options.nfft,esttype,options.Fs); [Sxyk,w] = ao.computeperiodogram({yseg,... xseg},win,options.nfft,esttype,options.Fs); [Syyk,w] = ao.computeperiodogram(yseg,... win,options.nfft,esttype,options.Fs); Sxx = Sxx + Sxxk; Sxy = Sxy + Sxyk; Syy = Syy + Syyk; % don't need to be divided by k because only rations are used here end case {'mscohere','cohere'} % Note: (Sxy1+Sxy2)/(Sxx1+Sxx2) ~= (Sxy1/Sxy2) + (Sxx1/Sxx2) % ie, we can't push the computation of Cxy into computeperiodogram. Sxy = zeros(options.nfft,1); % Initialize Syy = zeros(options.nfft,1); % Initialize for ii = 1:k, if order < 0 xseg = x(xStart(ii):xEnd(ii)); else [xseg,coeffs] = ltpda_polyreg(x(xStart(ii):xEnd(ii)), order); end if order < 0 yseg = y(xStart(ii):xEnd(ii)); else [yseg,coeffs] = ltpda_polyreg(y(xStart(ii):xEnd(ii)), order); end [Sxxk,w] = ao.computeperiodogram(xseg,... win,options.nfft,esttype,options.Fs); [Syyk,w] = ao.computeperiodogram(yseg,... win,options.nfft,esttype,options.Fs); [Sxyk,w] = ao.computeperiodogram({xseg,... yseg},win,options.nfft,esttype,options.Fs); Sxx = Sxx + Sxxk; Sxy = Sxy + Sxyk; Syy = Syy + Syyk; % don't need to be divided by k because only rations are used here end end % Generate the freq vector directly in Hz to avoid roundoff errors due to % conversions later. if ~freqVectorSpecified, w = psdfreqvec('npts',options.nfft, 'Fs',options.Fs); else if strcmpi(options.range,'onesided') warning(generatemsgid('InconsistentRangeOption'),... 'Ignoring ''onesided'' option. When a frequency vector is specified, a ''twosided'' PSD is computed'); end options.range = 'twosided'; end switch lower(esttype) case {'psd','cpsd'} % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. % Also, corresponding freq vector and freq units. % Here we use our own 'computepsd' to scale correctly the variance if k == 1 [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); P = Pxx; dP = []; else [Pxx,Pvxx,w,units] = utils.math.computepsd(Sxx,Svxx,w,options.range,options.nfft,options.Fs,esttype); P = Pxx; % the 1/k factor should come after welchscale if we don't want to apply sqrt() to it. % we correct for that here. It is only needed for 'asd','as' in % psd/cpsd, the other cases go always through 'PSD'. if (strcmpi(scale,'PSD') || strcmpi(scale,'PS')) dP = Pvxx; elseif (strcmpi(scale,'ASD') || strcmpi(scale,'AS')) dP = Pvxx/k; else error('### Unknown scale') end end case 'tfe' % Compute the 1-sided or 2-sided PSD [Power/freq] or mean-square [Power]. % Also, corresponding freq vector and freq units. % In the Cross PSD, the frequency vector and xunits are not used. [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype); [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype); % mean and std P = Pxy ./ Pxx; % Txy if k == 1 dP =[]; else dP = (k/(k-1)^2)*(Pyy./Pxx).*(1 - (abs(Pxy).^2)./(Pxx.*Pyy)); end case 'mscohere' % Magnitude Square Coherence estimate. % Auto PSD for 2nd input vector. The freq vector & xunits are not % used. [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype); [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype); % mean and std P = (abs(Pxy).^2)./(Pxx.*Pyy); % Magnitude-squared coherence dP = (2*P/k).*(1-P).^2; case 'cohere' % Complex Coherence estimate. % Auto PSD for 2nd input vector. The freq vector & xunits are not % used. [Pxx,w,units] = computepsd(Sxx,w,options.range,options.nfft,options.Fs,esttype); [Pxy,w,units] = computepsd(Sxy,w,options.range,options.nfft,options.Fs,esttype); [Pyy,w,units] = computepsd(Syy,w,options.range,options.nfft,options.Fs,esttype); P = Pxy./sqrt(Pxx.*Pyy); % Complex coherence dP = (2*abs(P)/k).*(1-abs(P)).^2; end % end % Scale to required units [P, dP, info] = ao.welchscale(P, dP, win, fs, scale, inunits); info.navs = k; if k ==1 dev = []; else dev = sqrt(dP); end varargout = {P, w, info, dev}; end