Mercurial > hg > ltpda
view m-toolbox/html_help/help/ug/ltpda_training_topic_5_4.html @ 30:317b5f447f3e database-connection-manager
Update workspaceBrowser
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> <html lang="en"> <head> <meta name="generator" content= "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> <meta http-equiv="Content-Type" content= "text/html; charset=us-ascii"> <title>Non-linear least squares fitting of time series (LTPDA Toolbox)</title> <link rel="stylesheet" href="docstyle.css" type="text/css"> <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> <meta name="description" content= "Presents an overview of the features, system requirements, and starting the toolbox."> </head> <body> <a name="top_of_page" id="top_of_page"></a> <p style="font-size:1px;"> </p> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr> <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> <td valign="baseline" align="right"><a href= "ltpda_training_topic_5_3.html"><img src="b_prev.gif" border="0" align= "bottom" alt="Fitting time series with polynomials"></a> <a href= "ltpda_training_topic_5_5.html"><img src="b_next.gif" border="0" align= "bottom" alt="IFO/Temperature Example - signal subtraction"></a></td> </tr> </table> <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Non-linear least squares fitting of time series</h1> <hr> <p> <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> <html lang="en"> <head> <meta name="generator" content= "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> <meta http-equiv="Content-Type" content= "text/html; charset=us-ascii"> <title>Non-linear least squares fitting of time series (LTPDA Toolbox)</title> <link rel="stylesheet" href="docstyle.css" type="text/css"> <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> <meta name="description" content= "Presents an overview of the features, system requirements, and starting the toolbox."> </head> <body> <a name="top_of_page" id="top_of_page"></a> <p style="font-size:1px;"> </p> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr> <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> <td valign="baseline" align="right"><a href= "ltpda_training_topic_5_3.html"><img src="b_prev.gif" border="0" align= "bottom" alt="Fitting time series with polynomials"></a> <a href= "ltpda_training_topic_5_5.html"><img src="b_next.gif" border="0" align= "bottom" alt="IFO/Temperature Example - signal subtraction"></a></td> </tr> </table> <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Non-linear least squares fitting of time series</h1> <hr> <p> <p> Non-linear least square fitting of time-series exploits the function <tt>ao/xfit</tt>. </p> <h2> Non-linear least square fitting of time series </h2> <p> During this exercise we will: <ol> <li> Load time series data <li> Fit data with <tt>ao/xfit</tt> <li> Check results <li> Refine the fit with a Monte Carlo search </ol> </p> <p> Let us open a new editor window and load test data. </p> <div class="fragment"><pre> a = ao(plist(<span class="string">'filename'</span>, <span class="string">'topic5/T5_Ex05_TestNoise.xml'</span>)); a.setName(<span class="string">'data'</span>); iplot(a) </pre></div> <p> As can be seen this is a chirped sine wave with some noise. <div align="center"> <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_4_1.png" align="center" border="0"> </div> We could now try the fit. The first parameter to pass to <tt>xfit</tt> is a fit model. In this case we assume that we are dealing with a linearly chirped sine wave according to the equation: <br/> <br/> <div align="center"> <IMG src="images/ltpda_training_1/topic5/ex4_chirpsine.gif" align="center" border="0"> </div> <br/> The previous function can be stored within a <tt>smodel</tt> analysis object to pass to the fitting machinery: <div class="fragment"><pre> mdl = smodel(plist(<span class="string">'Name'</span>, <span class="string">'chirp'</span>, ... <span class="string">'expression'</span>, <span class="string">'A.*sin(2*pi*(f + f0.*t).*t + p) + c'</span>, ... <span class="string">'params'</span>, <span class="string">{'A','f','f0','p','c'}</span>, ... <span class="string">'xvar'</span>, <span class="string">'t'</span>, ... <span class="string">'xunits'</span>, <span class="string">'s'</span>, <span class="string">'yunits'</span>, <span class="string">'m'</span>)); </pre></div> We need to specify a starting guess for the model parameters. The output of <tt>ao/xfit</tt> is a <tt>pest</tt> analysis objects containing fit parameters. </p> <div class="fragment"><pre> plfit1 = plist(<span class="string">'Function'</span>, <span class="string">mdl</span>, ... <span class="string">'P0'</span>, [5,9e-5,9e-6,0,5]); params1 = xfit(a, plfit1); </pre></div> <p> Once the fit is done. We can evaluate our model to check fit results. </p> <div class="fragment"><pre> b = eval(params1, plist(<span class="string">'xdata'</span>, a, <span class="string">'xfield'</span>, <span class="string">'x'</span>)); b.setName; iplot(a,b) </pre></div> <p> As you can see, the fit is not accurate. One of the great problems of non-linear least square methods is that they easily find a local minimum of the chi square function and stop there without finding the global minimum. There are two possibile solutions to such kind of problems: the first one is to refine step by step the fit by looking at the data; the second one is to perform a Monte Carlo search in the parameter space. This way, the fitting machinery extracts the number of points you define in the <tt>'Npoints'</tt> key, evaluates the chi square at those points, reoders by ascending chi square, selects the first guesses and fit starting from them. </p> <div class="fragment"><pre> plfit2 = plist(<span class="string">'Function'</span>, <span class="string">mdl</span>, ... <span class="string">'MonteCarlo'</span>, <span class="string">'yes'</span>, ... <span class="string">'Npoints'</span>, 1000, ... <span class="string">'LB'</span>, [1,5e-5,5e-6,0,2], ... <span class="string">'UB'</span>, [10,5e-4,5e-5,2*pi,7]); params2 = xfit(a, plfit2); c = eval(params2, plist(<span class="string">'xdata'</span>, a, <span class="string">'xfield'</span>, <span class="string">'x'</span>)); c.setName; iplot(a,c) </pre></div> <p> The fit now looks like better... <div align="center"> <IMG src="images/ltpda_training_1/topic5/ltpda_training_5_4_3.png" align="center" border="0"> </div> Let us compare fit results with nominal parameters. <br/> Data were generated with the following set of parameters: </p> <div class="fragment"><pre> A = 3 f = 1e-4 f0 = 1e-5 p = 0.3 c = 5 </pre></div> <p> Fitted parameters are instead: </p> <div class="fragment"><pre> A = 3.02 +/- 0.05 f = (7 +/- 3)e-5 f0 = (1.003 +/- 0.003)e-5 p = 0.33 +/- 0.04 c = 4.97 +/- 0.03 </pre></div> <p> The correlation matrix of the parameters, the chi square, the degree of freedom, the covariance matrix are store in the output <tt>pest</tt>. Other useful information are stored in the <tt>procinfo</tt> (processing information) field. This field is a <tt>plist</tt> and is used to additional information that can be returned from algorithms. For example, to extract the chi square, we write: </p> <div class="fragment"><pre> params2.chi2 1.0253740840052 </pre></div> <p> And to know the correlation matrix: </p> <div class="fragment"><pre> params2.corr Columns 1 through 3 1 0.120986348157139 -0.0970894969803509 0.120986348157139 1 -0.966114904879414 -0.0970894969803509 -0.966114904879414 1 -0.156801230958825 -0.848296014553159 0.717376893765734 -0.0994358284166703 0.187645552903433 -0.169496082635319 Columns 4 through 5 -0.156801230958825 -0.0994358284166703 -0.848296014553159 0.187645552903433 0.717376893765734 -0.169496082635319 1 -0.199286767157984 -0.199286767157984 1 </pre></div> <p> Not so bad! </p> </p> <br> <br> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr valign="top"> <td align="left" width="20"><a href="ltpda_training_topic_5_3.html"><img src= "b_prev.gif" border="0" align="bottom" alt= "Fitting time series with polynomials"></a> </td> <td align="left">Fitting time series with polynomials</td> <td> </td> <td align="right">IFO/Temperature Example - signal subtraction</td> <td align="right" width="20"><a href= "ltpda_training_topic_5_5.html"><img src="b_next.gif" border="0" align= "bottom" alt="IFO/Temperature Example - signal subtraction"></a></td> </tr> </table><br> <p class="copy">©LTP Team</p> </body> </html> </p> <br> <br> <table class="nav" summary="Navigation aid" border="0" width= "100%" cellpadding="0" cellspacing="0"> <tr valign="top"> <td align="left" width="20"><a href="ltpda_training_topic_5_3.html"><img src= "b_prev.gif" border="0" align="bottom" alt= "Fitting time series with polynomials"></a> </td> <td align="left">Fitting time series with polynomials</td> <td> </td> <td align="right">IFO/Temperature Example - signal subtraction</td> <td align="right" width="20"><a href= "ltpda_training_topic_5_5.html"><img src="b_next.gif" border="0" align= "bottom" alt="IFO/Temperature Example - signal subtraction"></a></td> </tr> </table><br> <p class="copy">©LTP Team</p> </body> </html>