view m-toolbox/html_help/help/ug/sigproc_polyfit.html @ 30:317b5f447f3e database-connection-manager

Update workspaceBrowser
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Mon, 05 Dec 2011 16:20:06 +0100
parents f0afece42f48
children
line wrap: on
line source

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
   "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

<html lang="en">
<head>
  <meta name="generator" content=
  "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org">
  <meta http-equiv="Content-Type" content=
  "text/html; charset=us-ascii">

  <title>Polynomial Fitting (LTPDA Toolbox)</title>
  <link rel="stylesheet" href="docstyle.css" type="text/css">
  <meta name="generator" content="DocBook XSL Stylesheets V1.52.2">
  <meta name="description" content=
  "Presents an overview of the features, system requirements, and starting the toolbox.">
  </head>

<body>
  <a name="top_of_page" id="top_of_page"></a>

  <p style="font-size:1px;">&nbsp;</p>

  <table class="nav" summary="Navigation aid" border="0" width=
  "100%" cellpadding="0" cellspacing="0">
    <tr>
      <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td>

      <td valign="baseline" align="right"><a href=
      "sigproc_fit.html"><img src="b_prev.gif" border="0" align=
      "bottom" alt="Fitting Algorithms"></a>&nbsp;&nbsp;&nbsp;<a href=
      "sigproc_linear_param_estimation_svd.html"><img src="b_next.gif" border="0" align=
      "bottom" alt="Linear Parameter Estimation with Singular Value Decomposition"></a></td>
    </tr>
  </table>

  <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Polynomial Fitting</h1>
  <hr>
  
  <p>
	<p>
  <a href="matlab:doc('ao/polyfit')">polyfit.m</a> overloads the polyfit() function of MATLAB for Analysis Objects.<br/>
  The script calls the following MATLAB functions:
  <ul>
    <li> polyfit.m </li>
    <li> polyval.m </li>
  </ul>
  <h2><a name="usage">Usage</a></h2>
  <div class="fragment"><pre>
      <span class="comment">% CALL:        b = polyfit(a, pl)</span>
      <span class="comment">%</span>
      <span class="comment">% Parameters:  'N'      - degree of polynomial to fit</span>
      <span class="comment">%              'coeffs' - (optional) coefficients</span>
      <span class="comment">%                         formed e.g. by [p,s] = polyfit(x,y,N);</span>
  </pre></div>
  The MATLAB function polyfit.m finds the coefficients of the polynomial p(x) of degree N that fits the vector 'x' to the vector 'y', in a least squares sense.<br/> After this in the script <a href="matlab:doc('ao/polyfit')">polyfit.m</a> the function polyval.m is called, which  evaluates the polynomial of order 'N' according to these coefficients. <br/>
  Using the output of polyval.m the fitted data series is created and outputted as analysis object.
</p>


  </p>

  <br>
  <br>
  <table class="nav" summary="Navigation aid" border="0" width=
  "100%" cellpadding="0" cellspacing="0">
    <tr valign="top">
      <td align="left" width="20"><a href="sigproc_fit.html"><img src=
      "b_prev.gif" border="0" align="bottom" alt=
      "Fitting Algorithms"></a>&nbsp;</td>

      <td align="left">Fitting Algorithms</td>

      <td>&nbsp;</td>

      <td align="right">Linear Parameter Estimation with Singular Value Decomposition</td>

      <td align="right" width="20"><a href=
      "sigproc_linear_param_estimation_svd.html"><img src="b_next.gif" border="0" align=
      "bottom" alt="Linear Parameter Estimation with Singular Value Decomposition"></a></td>
    </tr>
  </table><br>

  <p class="copy">&copy;LTP Team</p>
</body>
</html>