Mercurial > hg > ltpda
view m-toolbox/test/test_ao_cdfplot.m @ 30:317b5f447f3e database-connection-manager
Update workspaceBrowser
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Mon, 05 Dec 2011 16:20:06 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% % A test script for cdfplot % % L Ferraioli 30-06-2011 % % $Id: test_ao_cdfplot.m,v 1.1 2011/07/08 09:25:54 luigi Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% useful vars nsecs = 1000; fs = 1; %% build test objects a1 = ao.randn(nsecs,fs); a2 = ao.randn(nsecs,fs); a3 = ao.randn(nsecs,fs); a4 = ao.randn(nsecs,fs); %% test empirical cdfplot(a1,a2,a3) %% test Gaussian plcdf = plist('TESTDISTRIBUTION','NORMAL'); cdfplot(a1,a2,a3,plcdf) %% test Chi2 % chi2 with 2 degrees of freedom y1 = a1.^2 + a2.^2; y2 = a3.^2 + a4.^2; plcdf = plist('TESTDISTRIBUTION','CHI2','DOF',2); cdfplot(y1,y2,plcdf) %% test F % chi2 with 2 degrees of freedom y1 = a1.^2 + a2.^2; y2 = a3.^2 + a4.^2; % f distribution with 2 and 2 degrees of freedom y3 = y1./y2; plcdf = plist('TESTDISTRIBUTION','F','DOF1',2,'DOF2',2); cdfplot(y3,plcdf) %% test Gamma % this requires statistics toolbox k = 10; % shape parameter theta = 2; % scale parameter Y1 = random('Gamma',k,theta,1000,1); b1 = ao(plist('fs', 1, 'yvals', Y1, 'type', 'tsdata')); Y2 = random('Gamma',k,theta,1000,1); b2 = ao(plist('fs', 1, 'yvals', Y2, 'type', 'tsdata')); plcdf = plist('TESTDISTRIBUTION','GAMMA','SHAPE',k,'SCALE',theta); cdfplot(b1,b2,plcdf)